import os # Set default cache locations BEFORE importing libraries that use them PROJECT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) if 'NLTK_DATA' not in os.environ: nltk_data_path = os.path.join(PROJECT_DIR, 'cache-nltk') os.makedirs(nltk_data_path, exist_ok=True) os.environ['NLTK_DATA'] = nltk_data_path if 'HF_HOME' not in os.environ: os.environ['HF_HOME'] = os.path.join(PROJECT_DIR, 'cache-huggingface') from salience.timed_import import timed_import with timed_import("import numpy as np"): import numpy as np with timed_import("import torch"): import torch with timed_import("from sentence_transformers import SentenceTransformer"): from sentence_transformers import SentenceTransformer with timed_import("import nltk"): import nltk.data import nltk # Download punkt_tab to the configured location # Using punkt_tab (the modern tab-separated format introduced in NLTK 3.8+) # instead of the older punkt pickle format # The punkt_tab model version depends on the NLTK Python package version # Check your NLTK version with: uv pip show nltk nltk.download('punkt_tab') # Available models for the demo AVAILABLE_MODELS = { 'all-mpnet-base-v2': 'all-mpnet-base-v2', # Dec 2020 'gte-large-en-v1.5': 'Alibaba-NLP/gte-large-en-v1.5', # Jan 2024 # 'qwen3-embedding-4b': 'Qwen/Qwen3-Embedding-4B', # April 2025 'mxbai-embed-large-v1': 'mixedbread-ai/mxbai-embed-large-v1', } # On clustering # all-mpnet-base-v2: 40.03 # mixedbread-ai/mxbai-embed-large-v1: 46.71 # gte-large-en-v1.5: 47.95 # Qwen/Qwen3-Embedding-0.6B: 52.33 # Qwen/Qwen3-Embedding-4B: 57.15 # On STS # all-mpnet-base-v2: 58.17 # gte-large-en-v1.5: 81.43 # Qwen/Qwen3-Embedding-0.6B: 76.17 # Qwen/Qwen3-Embedding-4B: 80.86 # mixedbread-ai/mxbai-embed-large-v1: 85.00 # Load all models into memory print("Loading sentence transformer models...") models = {} models['all-mpnet-base-v2'] = SentenceTransformer('all-mpnet-base-v2') print("Loading Alibaba-NLP/gte-large-en-v1.5") models['gte-large-en-v1.5'] = SentenceTransformer('Alibaba-NLP/gte-large-en-v1.5', trust_remote_code=True) #print("Loading Qwen/Qwen3-Embedding-4B") #models['qwen3-embedding-4b'] = SentenceTransformer('Qwen/Qwen3-Embedding-4B', trust_remote_code=True) print("Loading mixedbread-ai/mxbai-embed-large-v1") models["mxbai-embed-large-v1"] = SentenceTransformer('mixedbread-ai/mxbai-embed-large-v1') print("All models loaded!") sent_detector = nltk.data.load('tokenizers/punkt/english.pickle') def cos_sim(a): sims = a @ a.T a_norm = np.linalg.norm(a, axis=-1, keepdims=True) sims /= a_norm sims /= a_norm.T return sims def degree_power(A, k): degrees = np.power(np.array(A.sum(1)), k).ravel() D = np.diag(degrees) return D def normalized_adjacency(A): normalized_D = degree_power(A, -0.5) return torch.from_numpy(normalized_D.dot(A).dot(normalized_D)) def get_sentences(source_text): sentence_ranges = list(sent_detector.span_tokenize(source_text)) sentences = [source_text[start:end] for start, end in sentence_ranges] return sentences, sentence_ranges def text_rank(sentences, model_name='all-mpnet-base-v2'): model = models[model_name] vectors = model.encode(sentences) adjacency = torch.tensor(cos_sim(vectors)).fill_diagonal_(0.) adjacency[adjacency < 0] = 0 return normalized_adjacency(adjacency) def extract(source_text, model_name='all-mpnet-base-v2'): """ Main API function that extracts sentence positions and computes normalized adjacency matrix. Returns: sentence_ranges: List of (start, end) tuples for each sentence's character position adjacency: (N × N) normalized adjacency matrix where N is the number of sentences. Each entry (i,j) represents the normalized similarity between sentences i and j. This matrix is returned to the frontend, which raises it to a power and computes the final salience scores via random walk simulation. """ sentences, sentence_ranges = get_sentences(source_text) adjacency = text_rank(sentences, model_name) return sentence_ranges, adjacency # ============================================================================= # Unused/Debugging Code # ============================================================================= def terminal_distr(adjacency, initial=None): sample = initial if initial is not None else torch.full((adjacency.shape[0],), 1.) scores = sample.matmul(torch.matrix_power(adjacency, 10)).numpy().tolist() return scores def get_results(sentences, adjacency): scores = terminal_distr(adjacency) for score, sentence in sorted(zip(scores, sentences), key=lambda xs: xs[0]): if score > 1.1: print('{:0.2f}: {}'.format(score, sentence))