import numpy as np import torch from sentence_transformers import SentenceTransformer import nltk.data import nltk import os # Set NLTK data path to project directory PROJECT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) NLTK_DATA_DIR = os.path.join(PROJECT_DIR, 'nltk_data') # Add to NLTK's search path nltk.data.path.insert(0, NLTK_DATA_DIR) # Download to the custom location # Using punkt_tab (the modern tab-separated format introduced in NLTK 3.8+) # instead of the older punkt pickle format # The punkt_tab model version depends on the NLTK Python package version # Check your NLTK version with: uv pip show nltk nltk.download('punkt_tab', download_dir=NLTK_DATA_DIR) # Available models for the demo AVAILABLE_MODELS = { 'all-mpnet-base-v2': 'all-mpnet-base-v2', # Dec 2020 'gte-large-en-v1.5': 'Alibaba-NLP/gte-large-en-v1.5', # Jan 2024 # 'qwen3-embedding-4b': 'Qwen/Qwen3-Embedding-4B', # April 2025 'mxbai-embed-large-v1': 'mixedbread-ai/mxbai-embed-large-v1', } # On clustering # mixedbread-ai/mxbai-embed-large-v1: 46.71 # gte-large-en-v1.5: 47.95 # Qwen/Qwen3-Embedding-0.6B: 52.33 # Qwen/Qwen3-Embedding-4B: 57.15 # On STS # gte-large-en-v1.5: 81.43 # Qwen/Qwen3-Embedding-0.6B: 76.17 # Qwen/Qwen3-Embedding-4B: 80.86 # mixedbread-ai/mxbai-embed-large-v1: 85.00 # Load all models into memory print("Loading sentence transformer models...") models = {} models['all-mpnet-base-v2'] = SentenceTransformer('all-mpnet-base-v2') print("Loading Alibaba-NLP/gte-large-en-v1.5") models['gte-large-en-v1.5'] = SentenceTransformer('Alibaba-NLP/gte-large-en-v1.5', trust_remote_code=True) #print("Loading Qwen/Qwen3-Embedding-4B") #models['qwen3-embedding-4b'] = SentenceTransformer('Qwen/Qwen3-Embedding-4B', trust_remote_code=True) print("Loading mixedbread-ai/mxbai-embed-large-v1") models["mxbai-embed-large-v1"] = SentenceTransformer('mixedbread-ai/mxbai-embed-large-v1') print("All models loaded!") sent_detector = nltk.data.load('tokenizers/punkt/english.pickle') def cos_sim(a, b): sims = a @ b.T a_norm = np.linalg.norm(a, axis=-1) b_norm = np.linalg.norm(b, axis=-1) a_normalized = (sims.T / a_norm.T).T sims = a_normalized / b_norm return sims def degree_power(A, k): degrees = np.power(np.array(A.sum(1)), k).ravel() D = np.diag(degrees) return D def normalized_adjacency(A): normalized_D = degree_power(A, -0.5) return torch.from_numpy(normalized_D.dot(A).dot(normalized_D)) def get_sentences(source_text): sentence_ranges = list(sent_detector.span_tokenize(source_text)) sentences = [source_text[start:end] for start, end in sentence_ranges] return sentences, sentence_ranges def text_rank(sentences, model_name='all-mpnet-base-v2'): model = models[model_name] vectors = model.encode(sentences) adjacency = torch.tensor(cos_sim(vectors, vectors)).fill_diagonal_(0.) adjacency[adjacency < 0] = 0 return normalized_adjacency(adjacency) def extract(source_text, model_name='all-mpnet-base-v2'): """ Main API function that extracts sentence positions and computes normalized adjacency matrix. Returns: sentence_ranges: List of (start, end) tuples for each sentence's character position adjacency: (N × N) normalized adjacency matrix where N is the number of sentences. Each entry (i,j) represents the normalized similarity between sentences i and j. This matrix is returned to the frontend, which raises it to a power and computes the final salience scores via random walk simulation. """ sentences, sentence_ranges = get_sentences(source_text) adjacency = text_rank(sentences, model_name) return sentence_ranges, adjacency # ============================================================================= # Unused/Debugging Code # ============================================================================= def terminal_distr(adjacency, initial=None): sample = initial if initial is not None else torch.full((adjacency.shape[0],), 1.) scores = sample.matmul(torch.matrix_power(adjacency, 10)).numpy().tolist() return scores def get_results(sentences, adjacency): scores = terminal_distr(adjacency) for score, sentence in sorted(zip(scores, sentences), key=lambda xs: xs[0]): if score > 1.1: print('{:0.2f}: {}'.format(score, sentence))