from flask import Flask, request import numpy as np from .salience import extract, AVAILABLE_MODELS import json app = Flask(__name__) with open('./transcript.txt', 'r') as file: source_text = file.read().strip() @app.route("/models") def models_view(): return json.dumps(list(AVAILABLE_MODELS.keys())) @app.route("/salience") def salience_view(): model_name = request.args.get('model', 'all-mpnet-base-v2') # Validate model name if model_name not in AVAILABLE_MODELS: return json.dumps({'error': f'Invalid model: {model_name}'}), 400 sentence_ranges, adjacency = extract(source_text, model_name) return json.dumps({ 'source': source_text, 'intervals': sentence_ranges, 'adjacency': np.nan_to_num(adjacency.numpy()).tolist(), 'model': model_name, })