feat: figured out starmelon needs expr types

To generate partial application boxed closures I need to know the arity
of the expression to tell if more args will remain after the given args.
Right now I think I can recalculate the types if I have a symbol table
where I can look up every variable. I think this will be a lot of work
because I have to reimplement most of unification to deal with
collections, patterns, and type variables. And I currently don't know
how unification works.
This commit is contained in:
YetAnotherMinion 2021-12-29 14:57:35 +00:00 committed by nobody
commit 2e78b33524
Signed by: GrocerPublishAgent
GPG key ID: D460CD54A9E3AB86
4 changed files with 223 additions and 31 deletions

View file

@ -75,6 +75,67 @@ pub fn transpile(
let objects = elm::load_objects(&elm_cache_dir)?;
let mut symbol_table: HashMap<Symbol, SymbolKind> = HashMap::new();
for (key, node) in objects.iter() {
match interfaces.get(&key.0) {
None => {
//eprintln!("failed to find interface for object {}", key);
println!("skipping symbol because we don't have an interface {}", key);
//println!("{:?}", node);
}
Some(module_interface) => match module_interface.values.get(&key.1) {
None => {
println!("skipping symbol {}", key);
}
Some(annotation) => {
let elmi::CannonicalAnnotation(_free_vars, ref tipe) = annotation;
match node {
elmi::Node::Define(elmi::Expr::Function(ref parameters, _body), _deps) => {
//println!("found a definition {} arity {}", key, parameters.len() );
symbol_table.insert(
Symbol::Global(key),
SymbolKind::Function {
arity: parameters.len(),
tipe,
},
);
}
elmi::Node::Define(_, _deps) => {
let mut arity = 0;
let mut xs = tipe;
loop {
match xs {
elmi::Type::TLambda(_head, tail) => {
xs = tail;
arity += 1;
}
_ => break,
}
}
if arity == 0 {
symbol_table
.insert(Symbol::Global(key), SymbolKind::Value { tipe });
} else {
symbol_table.insert(
Symbol::Global(key),
SymbolKind::Function { arity, tipe },
);
}
}
elmi::Node::DefineTailFunc(arg_names, expr, _deps) => {
println!("found tail func {}", key);
}
_ => {
symbol_table.insert(Symbol::Global(key), SymbolKind::Value { tipe });
}
}
}
},
}
}
if let Some(node) = objects.get(&entrypoint) {
match node {
elmi::Node::Define(elmi::Expr::Function(ref parameters, ref body), deps) => {
@ -83,6 +144,12 @@ pub fn transpile(
}
let elmi::CannonicalAnnotation(elmi::FreeVars(free_variables), tipe) = signature;
// So I want a map of symbol to is function with arity or is value. I don't need a
// scope mechansim because elm prevents variable shadowing. So the map can
// overwrite values for sibling scopes. So everytime I visit an Expr I want to
// return the arity of that expression. One problem is I need to generate the
// arguments before serializing the body of the closure
let (parameter_types, return_type) =
extract_function_types(&tipe, parameters.len()).unwrap();
@ -90,13 +157,14 @@ pub fn transpile(
.into_iter()
.zip(parameter_types.into_iter())
.collect::<Vec<_>>();
// TODO add any TLambdas in the signature to the type parameters of the functions
// as where bounds
let mut tokens = rust::Tokens::new();
codegen_function(
&mut tokens,
&mut symbol_table,
&entrypoint.1,
&free_variables,
&xs,
@ -169,8 +237,6 @@ pub fn transpile(
}
}
let _symbol_table: HashMap<elmi::Global, elmi::Node> = HashMap::new();
// step 6, start generating rust code using a tree visitor on each of the entry points.
// Accumulate the contents of each rust module in map.
//
@ -185,6 +251,21 @@ pub fn transpile(
Ok(())
}
// So when I have a destructuring, I will want to take a look at the type of that symbol and
// derive the tipe of the child so I can insert it into my table
type SymbolTable<'a> = HashMap<Symbol<'a>, SymbolKind<'a>>;
#[derive(Debug, Clone, Hash, PartialEq, Eq)]
enum Symbol<'a> {
Global(&'a elmi::Global),
Local(&'a elmi::Name),
}
enum SymbolKind<'a> {
Function { arity: usize, tipe: &'a elmi::Type },
Value { tipe: &'a elmi::Type },
}
fn validate_function_type(tipe: &elmi::Type) -> Result<(), TypeError> {
match tipe {
elmi::Type::TLambda(a, b) => {
@ -283,6 +364,7 @@ fn validate_output_type(tipe: &elmi::Type) -> Result<(), TypeError> {
fn codegen_function(
tokens: &mut rust::Tokens,
symbol_table: &mut SymbolTable,
name: &elmi::Name,
type_variables: &HashSet<elmi::Name>,
parameters: &[(&elmi::Name, elmi::Type)],
@ -290,14 +372,14 @@ fn codegen_function(
body: &elmi::Expr,
) {
quote_in! { *tokens =>
fn #(&name.0)#(if !type_variables.is_empty() =>
<#(for elmi::Name(ref tvar) in type_variables.iter() join (, ) =>
fn #name#(if !type_variables.is_empty() =>
<#(for tvar in type_variables.iter() join (, ) =>
#tvar
)>
)(#(for (elmi::Name(ref parameter), tipe) in parameters.iter() join (, ) =>
)(#(for (parameter, tipe) in parameters.iter() join (, ) =>
#parameter: #(ref out { codegen_type(out, tipe) })
)) -> #(ref out { codegen_type(out, &return_type) }) {
#(ref out { codegen_expr(out, body) })
#(ref out { codegen_expr(out, symbol_table, body) })
}
}
}
@ -367,7 +449,7 @@ fn codegen_name_from_global(
name: &elmi::Name,
) {
quote_in! { *tokens =>
#(ref out => codegen_home_to_builder(out, home) )__#(&name.0)
#(ref out => codegen_home_to_builder(out, home) )__#name
}
}
@ -382,7 +464,7 @@ fn codegen_home_to_builder(tokens: &mut rust::Tokens, global: &elmi::ModuleNameC
}
}
fn codegen_expr(tokens: &mut rust::Tokens, expr: &elmi::Expr) {
fn codegen_expr(tokens: &mut rust::Tokens, symbol_table: &mut SymbolTable, expr: &elmi::Expr) {
match expr {
elmi::Expr::Bool(true) => quote_in! { *tokens => true },
elmi::Expr::Bool(false) => quote_in! { *tokens => false },
@ -390,7 +472,7 @@ fn codegen_expr(tokens: &mut rust::Tokens, expr: &elmi::Expr) {
elmi::Expr::Str(s) => quote_in! { *tokens => #(quoted(s)) },
elmi::Expr::Int(x) => quote_in! { *tokens => #(x.to_string()) },
elmi::Expr::Float(x) => quote_in! { *tokens => #(x.to_string()) },
elmi::Expr::VarLocal(elmi::Name(ref name)) => {
elmi::Expr::VarLocal(name) => {
quote_in! { *tokens =>
#name
}
@ -411,7 +493,7 @@ fn codegen_expr(tokens: &mut rust::Tokens, expr: &elmi::Expr) {
} else {
quote_in! { *tokens =>
&[
#(for x in xs join (,#<push>) => #(ref out => codegen_expr(out, x) ) )
#(for x in xs join (,#<push>) => #(ref out => codegen_expr(out, symbol_table, x) ) )
]
}
}
@ -424,39 +506,107 @@ fn codegen_expr(tokens: &mut rust::Tokens, expr: &elmi::Expr) {
}
}
elmi::Expr::Call(ref fexpr, args) => {
quote_in! { *tokens =>
#(match &**fexpr {
elmi::Expr::VarGlobal(elmi::Global(home, name)) => {
#(ref out => codegen_name_from_global(out, home, name))
match &**fexpr {
elmi::Expr::VarGlobal(global @ elmi::Global(home, name)) => {
match symbol_table.get(&Symbol::Global(global)) {
Some(SymbolKind::Function { arity, tipe }) => {
if args.len() < *arity {
let mut closure_args = Vec::new();
for i in 0..(*arity - args.len()) {
closure_args.push(elmi::Expr::VarLocal(elmi::Name(format!(
"_partial{}",
i
))));
}
quote_in! { *tokens =>
Box::new(| #(for arg in closure_args.iter() join (, ) => #(ref out => codegen_expr(out, symbol_table, arg))) | {
#(ref out => {
codegen_name_from_global(out, home, name)
})(
#(for arg in args.iter().chain(closure_args.iter()) join (,#<push>) => #(ref out =>
codegen_expr(out, symbol_table, arg) )
)
)
})
}
} else {
quote_in! { *tokens =>
#(ref out => {
codegen_name_from_global(out, home, name)
})(
#(for arg in args join (,#<push>) => #(ref out =>
codegen_expr(out, symbol_table, arg) )
)
)
}
}
//println!("found the function symbol {}, arity {}", global, arity);
}
Some(SymbolKind::Value { tipe }) => {
panic!("tried to call a symbol we thought was a value: {}", global);
}
None => {
panic!("tried to call a symbol we don't know about: {}", global);
}
}
_ => {
"unknown"
}
elmi::Expr::VarLocal(name) => {
quote_in! { *tokens =>
#name(
#(for arg in args join (,#<push>) => #(ref out =>
codegen_expr(out, symbol_table, arg) )
)
)
}
})(
#(for arg in args join (,#<push>) => #(ref out =>
codegen_expr(out, arg) )
)
)
}
}
_ => {
println!("I was unable to call an expression");
// TODO write a function that can take an expression and return the arity using
// the symbol table from the bottom up.
quote_in! { *tokens =>
#(format!("{:?}", fexpr))
}
//panic!("calling an expression not yet supported");
}
};
}
//elmi::Expr::TailCall(Name, Vec<(Name, Expr)>),
//elmi::Expr::If(Vec<(Expr, Expr)>, Box<Expr>),
//elmi::Expr::Let(Def, Box<Expr>),
elmi::Expr::If(branches, final_branch) => {
quote_in! { *tokens =>
#(for (condition, expr) in branches join (#<push>#("} else")) =>
if #(ref out => codegen_expr(out, symbol_table, condition)) #("{")
#(ref out => codegen_expr(out, symbol_table, expr))
) #("} else {")
#(ref out => codegen_expr(out, symbol_table, expr))
#("}")
}
}
elmi::Expr::Let(def, expr) => {
quote_in! { *tokens =>
#(ref out => codegen_def(out, symbol_table, def))
#<push>
#(ref out => codegen_expr(out, symbol_table, expr))
}
}
//elmi::Expr::Destruct(Destructor, Box<Expr>),
//elmi::Expr::Case(Name, Name, Decider<Choice>, Vec<(i64, Expr)>),
//elmi::Expr::Accessor(Name),
elmi::Expr::Accessor(name) => {
quote_in! { *tokens =>
Box::new(|_v| { _v.#name })
}
}
//elmi::Expr::Access(Box<Expr>, Name),
//elmi::Expr::Update(Box<Expr>, HashMap<Name, Expr>),
//elmi::Expr::Record(HashMap<Name, Expr>),
elmi::Expr::Unit => (),
elmi::Expr::Tuple(a, b, None) => {
quote_in! { *tokens =>
( #(ref out => codegen_expr(out, a) ), #(ref out => codegen_expr(out, b) ) )
( #(ref out => codegen_expr(out, symbol_table, a) ), #(ref out => codegen_expr(out, symbol_table, b) ) )
}
}
elmi::Expr::Tuple(a, b, Some(c)) => {
quote_in! { *tokens =>
( #(ref out => codegen_expr(out, a) ), #(ref out => codegen_expr(out, b) ), #(ref out => codegen_expr(out, c) ) )
( #(ref out => codegen_expr(out, symbol_table, a) ), #(ref out => codegen_expr(out, symbol_table, b) ), #(ref out => codegen_expr(out, symbol_table, c) ) )
}
}
//elmi::Expr::Shader(ShaderSource, HashSet<Name>, HashSet<Name>),
@ -464,6 +614,25 @@ fn codegen_expr(tokens: &mut rust::Tokens, expr: &elmi::Expr) {
}
}
fn codegen_def(tokens: &mut rust::Tokens, symbol_table: &mut SymbolTable, def: &elmi::Def) {
match def {
elmi::Def::Def(name, expr) => {
quote_in! { *tokens =>
let #name = #(ref out => codegen_expr(out, symbol_table, expr) );
}
}
elmi::Def::TailDef(name, arg_names, expr) => {
quote_in! { *tokens =>
|#(for arg in arg_names join (, ) => mut #arg) | {
#("'")#name : loop {
#(ref out => codegen_expr(out, symbol_table, expr))
}
}
}
}
}
}
fn extract_function_types(
mut tipe: &elmi::Type,
mut nargs: usize,