salience-editor/api/salience/__init__.py

146 lines
4.7 KiB
Python
Raw Normal View History

2025-11-29 13:56:55 -08:00
# Salience API
# ============
# Uses a worker thread for model inference to avoid fork() issues with Metal/MPS.
# The worker thread owns all model instances; HTTP handlers submit work via queue.
print("Starting salience __init__.py...")
2025-10-30 16:26:48 -07:00
from flask import Flask, request
2025-11-01 12:08:03 -07:00
from flask_cors import CORS
import numpy as np
2025-11-29 13:56:55 -08:00
from .salience import submit_work, AVAILABLE_MODELS
import json
import time
from collections import deque
import threading
app = Flask(__name__)
CORS(app, origins=["http://localhost:5173", "http://127.0.0.1:5173"])
# Thread-safe stats tracker for this worker process
class StatsTracker:
def __init__(self):
# Store (start_time, end_time, duration) for successful requests
self.processing_spans = deque(maxlen=1000)
# Store arrival timestamps for overflow requests
self.overflow_arrivals = deque(maxlen=1000)
self.lock = threading.Lock()
def add_processing_span(self, start_time, end_time):
duration = end_time - start_time
with self.lock:
self.processing_spans.append((start_time, end_time, duration))
# Clean old entries (>5 min)
cutoff = time.time() - 300
while self.processing_spans and self.processing_spans[0][0] < cutoff:
self.processing_spans.popleft()
def add_overflow_arrival(self, arrival_time):
with self.lock:
self.overflow_arrivals.append(arrival_time)
# Clean old entries (>5 min)
cutoff = time.time() - 300
while self.overflow_arrivals and self.overflow_arrivals[0] < cutoff:
self.overflow_arrivals.popleft()
def get_stats(self):
with self.lock:
return {
'processing_spans': [
{'start': start, 'end': end, 'duration': duration}
for start, end, duration in self.processing_spans
],
'overflow_arrivals': list(self.overflow_arrivals),
'window_seconds': 300 # 5 minutes
}
stats_tracker = StatsTracker()
2025-11-01 12:08:03 -07:00
# Load default text from transcript.txt for GET requests
with open('./transcript.txt', 'r') as file:
2025-11-01 12:08:03 -07:00
default_source_text = file.read().strip()
2025-10-30 16:26:48 -07:00
@app.route("/models")
def models_view():
return json.dumps(list(AVAILABLE_MODELS.keys()))
@app.route("/overflow", methods=['GET', 'POST'])
def overflow_view():
"""
Endpoint hit when HAProxy queue is full.
Returns 429 with statistics about processing and overflow.
"""
arrival_time = time.time()
stats_tracker.add_overflow_arrival(arrival_time)
stats = stats_tracker.get_stats()
response = {
'error': 'Queue full',
'status': 429,
'stats': stats,
'message': 'Service is at capacity. Try again or check queue statistics.'
}
return json.dumps(response), 429
@app.route("/stats")
def stats_view():
"""
Endpoint for frontend to poll current queue statistics.
Returns processing spans and overflow arrivals from last 5 minutes.
"""
stats = stats_tracker.get_stats()
return json.dumps(stats)
2025-11-01 12:08:03 -07:00
@app.route("/salience", methods=['GET'])
def salience_view_default():
"""GET endpoint - processes default text from transcript.txt"""
start_time = time.time()
2025-10-30 16:26:48 -07:00
model_name = request.args.get('model', 'all-mpnet-base-v2')
# Validate model name
if model_name not in AVAILABLE_MODELS:
return json.dumps({'error': f'Invalid model: {model_name}'}), 400
2025-11-29 13:56:55 -08:00
sentence_ranges, adjacency = submit_work(default_source_text, model_name)
2025-11-01 12:08:03 -07:00
end_time = time.time()
stats_tracker.add_processing_span(start_time, end_time)
2025-11-01 12:08:03 -07:00
return json.dumps({
'source': default_source_text,
'intervals': sentence_ranges,
'adjacency': np.nan_to_num(adjacency.numpy()).tolist(),
'model': model_name,
})
@app.route("/salience", methods=['POST'])
def salience_view_custom():
"""POST endpoint - processes text from request body"""
start_time = time.time()
2025-11-01 12:08:03 -07:00
model_name = request.args.get('model', 'all-mpnet-base-v2')
# Validate model name
if model_name not in AVAILABLE_MODELS:
return json.dumps({'error': f'Invalid model: {model_name}'}), 400
# Get document content from request body as plain text
source_text = request.data.decode('utf-8').strip()
if not source_text:
return json.dumps({'error': 'No text provided'}), 400
2025-11-29 13:56:55 -08:00
sentence_ranges, adjacency = submit_work(source_text, model_name)
2025-10-30 16:26:48 -07:00
end_time = time.time()
stats_tracker.add_processing_span(start_time, end_time)
return json.dumps({
'source': source_text,
'intervals': sentence_ranges,
'adjacency': np.nan_to_num(adjacency.numpy()).tolist(),
2025-10-30 16:26:48 -07:00
'model': model_name,
})