feat: deploy model api server to chicago-web01

This commit is contained in:
nobody 2025-11-27 11:01:54 -08:00
commit 0cb89ddc80
Signed by: GrocerPublishAgent
GPG key ID: D460CD54A9E3AB86
6 changed files with 394 additions and 18 deletions

View file

@ -1,12 +1,74 @@
# Memory Sharing for ML Models
# ============================
# This app is designed to run with Gunicorn's --preload flag, which loads the
# SentenceTransformer models once in the master process before forking workers.
# On Linux, fork uses copy-on-write (COW) semantics, so workers share the
# read-only model weights in memory rather than each loading their own copy.
# This is critical for keeping memory usage reasonable with large transformer models.
#
# ResourceTracker errors on shutdown (Python 3.14):
# When you Ctrl+C the Gunicorn process, you may see
# "ChildProcessError: [Errno 10] No child processes"
# from multiprocessing.resource_tracker.
#
# I think this is harmless. I think what happens is each forked worker gets a
# copy of the ResourceTracker object, then each copy tries to deallocate the
# same resources. The process still shuts down reasonbly quickly, so I'm not
# concerned.
print("Starting salience __init__.py...")
from flask import Flask, request
from flask_cors import CORS
import numpy as np
from .salience import extract, AVAILABLE_MODELS
import json
import time
from collections import deque
import threading
app = Flask(__name__)
CORS(app, origins=["http://localhost:5173"])
# Thread-safe stats tracker for this worker process
class StatsTracker:
def __init__(self):
# Store (start_time, end_time, duration) for successful requests
self.processing_spans = deque(maxlen=1000)
# Store arrival timestamps for overflow requests
self.overflow_arrivals = deque(maxlen=1000)
self.lock = threading.Lock()
def add_processing_span(self, start_time, end_time):
duration = end_time - start_time
with self.lock:
self.processing_spans.append((start_time, end_time, duration))
# Clean old entries (>5 min)
cutoff = time.time() - 300
while self.processing_spans and self.processing_spans[0][0] < cutoff:
self.processing_spans.popleft()
def add_overflow_arrival(self, arrival_time):
with self.lock:
self.overflow_arrivals.append(arrival_time)
# Clean old entries (>5 min)
cutoff = time.time() - 300
while self.overflow_arrivals and self.overflow_arrivals[0] < cutoff:
self.overflow_arrivals.popleft()
def get_stats(self):
with self.lock:
return {
'processing_spans': [
{'start': start, 'end': end, 'duration': duration}
for start, end, duration in self.processing_spans
],
'overflow_arrivals': list(self.overflow_arrivals),
'window_seconds': 300 # 5 minutes
}
stats_tracker = StatsTracker()
# Load default text from transcript.txt for GET requests
with open('./transcript.txt', 'r') as file:
default_source_text = file.read().strip()
@ -15,9 +77,40 @@ with open('./transcript.txt', 'r') as file:
def models_view():
return json.dumps(list(AVAILABLE_MODELS.keys()))
@app.route("/overflow", methods=['GET', 'POST'])
def overflow_view():
"""
Endpoint hit when HAProxy queue is full.
Returns 429 with statistics about processing and overflow.
"""
arrival_time = time.time()
stats_tracker.add_overflow_arrival(arrival_time)
stats = stats_tracker.get_stats()
response = {
'error': 'Queue full',
'status': 429,
'stats': stats,
'message': 'Service is at capacity. Try again or check queue statistics.'
}
return json.dumps(response), 429
@app.route("/stats")
def stats_view():
"""
Endpoint for frontend to poll current queue statistics.
Returns processing spans and overflow arrivals from last 5 minutes.
"""
stats = stats_tracker.get_stats()
return json.dumps(stats)
@app.route("/salience", methods=['GET'])
def salience_view_default():
"""GET endpoint - processes default text from transcript.txt"""
start_time = time.time()
model_name = request.args.get('model', 'all-mpnet-base-v2')
# Validate model name
@ -26,6 +119,9 @@ def salience_view_default():
sentence_ranges, adjacency = extract(default_source_text, model_name)
end_time = time.time()
stats_tracker.add_processing_span(start_time, end_time)
return json.dumps({
'source': default_source_text,
'intervals': sentence_ranges,
@ -36,6 +132,8 @@ def salience_view_default():
@app.route("/salience", methods=['POST'])
def salience_view_custom():
"""POST endpoint - processes text from request body"""
start_time = time.time()
model_name = request.args.get('model', 'all-mpnet-base-v2')
# Validate model name
@ -50,6 +148,9 @@ def salience_view_custom():
sentence_ranges, adjacency = extract(source_text, model_name)
end_time = time.time()
stats_tracker.add_processing_span(start_time, end_time)
return json.dumps({
'source': source_text,
'intervals': sentence_ranges,

View file

@ -1,24 +1,34 @@
import numpy as np
import torch
from sentence_transformers import SentenceTransformer
import nltk.data
import nltk
import os
# Set NLTK data path to project directory
# Set default cache locations BEFORE importing libraries that use them
PROJECT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
NLTK_DATA_DIR = os.path.join(PROJECT_DIR, 'nltk_data')
TRANSFORMERS_CACHE_DIR = os.path.join(PROJECT_DIR, 'models_cache')
# Add to NLTK's search path
nltk.data.path.insert(0, NLTK_DATA_DIR)
if 'NLTK_DATA' not in os.environ:
nltk_data_path = os.path.join(PROJECT_DIR, 'cache-nltk')
os.makedirs(nltk_data_path, exist_ok=True)
os.environ['NLTK_DATA'] = nltk_data_path
# Download to the custom location
if 'HF_HOME' not in os.environ:
os.environ['HF_HOME'] = os.path.join(PROJECT_DIR, 'cache-huggingface')
from salience.timed_import import timed_import
with timed_import("import numpy as np"):
import numpy as np
with timed_import("import torch"):
import torch
with timed_import("from sentence_transformers import SentenceTransformer"):
from sentence_transformers import SentenceTransformer
with timed_import("import nltk"):
import nltk.data
import nltk
# Download punkt_tab to the configured location
# Using punkt_tab (the modern tab-separated format introduced in NLTK 3.8+)
# instead of the older punkt pickle format
# The punkt_tab model version depends on the NLTK Python package version
# Check your NLTK version with: uv pip show nltk
nltk.download('punkt_tab', download_dir=NLTK_DATA_DIR)
nltk.download('punkt_tab')
# Available models for the demo
AVAILABLE_MODELS = {
@ -46,13 +56,13 @@ AVAILABLE_MODELS = {
print("Loading sentence transformer models...")
models = {}
models['all-mpnet-base-v2'] = SentenceTransformer('all-mpnet-base-v2', cache_folder=TRANSFORMERS_CACHE_DIR)
models['all-mpnet-base-v2'] = SentenceTransformer('all-mpnet-base-v2')
print("Loading Alibaba-NLP/gte-large-en-v1.5")
models['gte-large-en-v1.5'] = SentenceTransformer('Alibaba-NLP/gte-large-en-v1.5', trust_remote_code=True, cache_folder=TRANSFORMERS_CACHE_DIR)
models['gte-large-en-v1.5'] = SentenceTransformer('Alibaba-NLP/gte-large-en-v1.5', trust_remote_code=True)
#print("Loading Qwen/Qwen3-Embedding-4B")
#models['qwen3-embedding-4b'] = SentenceTransformer('Qwen/Qwen3-Embedding-4B', trust_remote_code=True, cache_folder=TRANSFORMERS_CACHE_DIR)
#models['qwen3-embedding-4b'] = SentenceTransformer('Qwen/Qwen3-Embedding-4B', trust_remote_code=True)
print("Loading mixedbread-ai/mxbai-embed-large-v1")
models["mxbai-embed-large-v1"] = SentenceTransformer('mixedbread-ai/mxbai-embed-large-v1', cache_folder=TRANSFORMERS_CACHE_DIR)
models["mxbai-embed-large-v1"] = SentenceTransformer('mixedbread-ai/mxbai-embed-large-v1')
print("All models loaded!")
sent_detector = nltk.data.load('tokenizers/punkt/english.pickle')

View file

@ -0,0 +1,20 @@
import sys
import time
class timed_import:
"""Context manager for timing imports."""
def __init__(self, name):
self.name = name
self.start = None
def __enter__(self):
sys.stdout.write(f"{self.name} ")
sys.stdout.flush()
self.start = time.time()
return self
def __exit__(self, *args):
elapsed = time.time() - self.start
print(f"in {elapsed:.1f}s")