refactor: rename ML model python backend folder
This commit is contained in:
parent
fee0e643e4
commit
76c28bafab
9 changed files with 0 additions and 0 deletions
|
|
@ -1,100 +0,0 @@
|
|||
import numpy as np
|
||||
import torch
|
||||
from sentence_transformers import SentenceTransformer
|
||||
import nltk.data
|
||||
import nltk
|
||||
import os
|
||||
|
||||
# Set NLTK data path to project directory
|
||||
PROJECT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
NLTK_DATA_DIR = os.path.join(PROJECT_DIR, 'nltk_data')
|
||||
|
||||
# Add to NLTK's search path
|
||||
nltk.data.path.insert(0, NLTK_DATA_DIR)
|
||||
|
||||
# Download to the custom location
|
||||
# Using punkt_tab (the modern tab-separated format introduced in NLTK 3.8+)
|
||||
# instead of the older punkt pickle format
|
||||
# The punkt_tab model version depends on the NLTK Python package version
|
||||
# Check your NLTK version with: uv pip show nltk
|
||||
nltk.download('punkt_tab', download_dir=NLTK_DATA_DIR)
|
||||
|
||||
# Available models for the demo
|
||||
AVAILABLE_MODELS = {
|
||||
'all-mpnet-base-v2': 'all-mpnet-base-v2', # Dec 2020
|
||||
'gte-large-en-v1.5': 'Alibaba-NLP/gte-large-en-v1.5', # Jan 2024
|
||||
# 'qwen3-embedding-4b': 'Qwen/Qwen3-Embedding-4B', # April 2025
|
||||
'mxbai-embed-large-v1': 'mixedbread-ai/mxbai-embed-large-v1',
|
||||
}
|
||||
|
||||
# On clustering
|
||||
# mixedbread-ai/mxbai-embed-large-v1: 46.71
|
||||
# gte-large-en-v1.5: 47.95
|
||||
# Qwen/Qwen3-Embedding-0.6B: 52.33
|
||||
# Qwen/Qwen3-Embedding-4B: 57.15
|
||||
|
||||
# On STS
|
||||
# gte-large-en-v1.5: 81.43
|
||||
# Qwen/Qwen3-Embedding-0.6B: 76.17
|
||||
# Qwen/Qwen3-Embedding-4B: 80.86
|
||||
# mixedbread-ai/mxbai-embed-large-v1: 85.00
|
||||
|
||||
# Load all models into memory
|
||||
print("Loading sentence transformer models...")
|
||||
models = {}
|
||||
|
||||
models['all-mpnet-base-v2'] = SentenceTransformer('all-mpnet-base-v2')
|
||||
print("Loading Alibaba-NLP/gte-large-en-v1.5")
|
||||
models['gte-large-en-v1.5'] = SentenceTransformer('Alibaba-NLP/gte-large-en-v1.5', trust_remote_code=True)
|
||||
#print("Loading Qwen/Qwen3-Embedding-4B")
|
||||
#models['qwen3-embedding-4b'] = SentenceTransformer('Qwen/Qwen3-Embedding-4B', trust_remote_code=True)
|
||||
print("Loading mixedbread-ai/mxbai-embed-large-v1")
|
||||
models["mxbai-embed-large-v1"] = SentenceTransformer('mixedbread-ai/mxbai-embed-large-v1')
|
||||
print("All models loaded!")
|
||||
|
||||
sent_detector = nltk.data.load('tokenizers/punkt/english.pickle')
|
||||
|
||||
def cos_sim(a, b):
|
||||
sims = a @ b.T
|
||||
a_norm = np.linalg.norm(a, axis=-1)
|
||||
b_norm = np.linalg.norm(b, axis=-1)
|
||||
a_normalized = (sims.T / a_norm.T).T
|
||||
sims = a_normalized / b_norm
|
||||
return sims
|
||||
|
||||
def degree_power(A, k):
|
||||
degrees = np.power(np.array(A.sum(1)), k).ravel()
|
||||
D = np.diag(degrees)
|
||||
return D
|
||||
|
||||
def normalized_adjacency(A):
|
||||
normalized_D = degree_power(A, -0.5)
|
||||
return torch.from_numpy(normalized_D.dot(A).dot(normalized_D))
|
||||
|
||||
def get_sentences(source_text):
|
||||
sentence_ranges = list(sent_detector.span_tokenize(source_text))
|
||||
sentences = [source_text[start:end] for start, end in sentence_ranges]
|
||||
return sentences, sentence_ranges
|
||||
|
||||
def text_rank(sentences, model_name='all-mpnet-base-v2'):
|
||||
model = models[model_name]
|
||||
vectors = model.encode(sentences)
|
||||
adjacency = torch.tensor(cos_sim(vectors, vectors)).fill_diagonal_(0.)
|
||||
adjacency[adjacency < 0] = 0
|
||||
return normalized_adjacency(adjacency)
|
||||
|
||||
def terminal_distr(adjacency, initial=None):
|
||||
sample = initial if initial is not None else torch.full((adjacency.shape[0],), 1.)
|
||||
scores = sample.matmul(torch.matrix_power(adjacency, 10)).numpy().tolist()
|
||||
return scores
|
||||
|
||||
def extract(source_text, model_name='all-mpnet-base-v2'):
|
||||
sentences, sentence_ranges = get_sentences(source_text)
|
||||
adjacency = text_rank(sentences, model_name)
|
||||
return sentence_ranges, adjacency
|
||||
|
||||
def get_results(sentences, adjacency):
|
||||
scores = terminal_distr(adjacency)
|
||||
for score, sentence in sorted(zip(scores, sentences), key=lambda xs: xs[0]):
|
||||
if score > 1.1:
|
||||
print('{:0.2f}: {}'.format(score, sentence))
|
||||
Loading…
Add table
Add a link
Reference in a new issue