feat: create deployment scripts
This commit is contained in:
parent
78297efe5c
commit
8d5bce4bfb
22 changed files with 2697 additions and 74 deletions
183
api/benchmarks/test_bench_self_cosine_sim.py
Normal file
183
api/benchmarks/test_bench_self_cosine_sim.py
Normal file
|
|
@ -0,0 +1,183 @@
|
|||
"""
|
||||
Benchmark different cosine similarity implementations for SELF-SIMILARITY (A vs A).
|
||||
This specialized version only computes norms once since we're comparing A with itself.
|
||||
|
||||
First run: python generate_embeddings.py
|
||||
Then run: pytest test_bench_self_cosine_sim.py --benchmark-json=genfiles/benchmark_self_results.json
|
||||
To visualize: python visualize_benchmarks.py genfiles/benchmark_self_results.json
|
||||
"""
|
||||
import os
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
# Load pre-generated embeddings once for all tests
|
||||
script_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
embeddings_path = os.path.join(script_dir, 'genfiles', 'embeddings.npy')
|
||||
vectors = np.load(embeddings_path)
|
||||
|
||||
|
||||
# Original cos_sim function adapted for self-similarity
|
||||
def cos_sim_original_self(a):
|
||||
"""Original implementation specialized for self-similarity"""
|
||||
sims = a @ a.T
|
||||
norms = np.linalg.norm(a, axis=-1)
|
||||
a_normalized = (sims.T / norms.T).T
|
||||
sims = a_normalized / norms
|
||||
return sims
|
||||
|
||||
|
||||
# Nested for loop version - PROPERLY IMPLEMENTED (norms calculated once)
|
||||
def cos_sim_nested_loop_self(a):
|
||||
"""Naive nested loop but with norms calculated once using numpy"""
|
||||
n = a.shape[0]
|
||||
sims = np.zeros((n, n))
|
||||
|
||||
# Calculate ALL norms once using vectorized numpy (not in the loop!)
|
||||
norms = np.linalg.norm(a, axis=-1)
|
||||
|
||||
for i in range(n):
|
||||
for j in range(n):
|
||||
dot_product = np.dot(a[i], a[j])
|
||||
sims[i, j] = dot_product / (norms[i] * norms[j])
|
||||
|
||||
return sims
|
||||
|
||||
|
||||
# E*E^T with manual in-place normalization
|
||||
def cos_sim_inplace_norm_self(a):
|
||||
"""In-place normalization specialized for self-similarity"""
|
||||
# Compute raw dot products
|
||||
sims = a @ a.T
|
||||
|
||||
# Compute norms ONCE (not separate a_norms and b_norms)
|
||||
norms = np.linalg.norm(a, axis=-1)
|
||||
|
||||
# Normalize in place
|
||||
for i in range(sims.shape[0]):
|
||||
for j in range(sims.shape[1]):
|
||||
sims[i, j] = sims[i, j] / (norms[i] * norms[j])
|
||||
|
||||
return sims
|
||||
|
||||
|
||||
# Broadcast division with in-place operations
|
||||
def cos_sim_broadcast_inplace_self(a):
|
||||
"""Broadcast in-place specialized for self-similarity"""
|
||||
# Compute raw dot products
|
||||
sims = a @ a.T
|
||||
|
||||
# Compute norms ONCE with keepdims for broadcasting
|
||||
norms = np.linalg.norm(a, axis=-1, keepdims=True) # shape (n, 1)
|
||||
|
||||
# Normalize in-place using broadcasting
|
||||
# Divide by norms (broadcasting across columns)
|
||||
sims /= norms
|
||||
# Divide by norms.T (broadcasting across rows)
|
||||
sims /= norms.T
|
||||
|
||||
return sims
|
||||
|
||||
|
||||
# Broadcast division without in-place operations
|
||||
def cos_sim_broadcast_self(a):
|
||||
"""Broadcast without in-place operations - allocates new matrices"""
|
||||
# Compute raw dot products
|
||||
sims = a @ a.T
|
||||
|
||||
# Compute norms ONCE with keepdims for broadcasting
|
||||
norms = np.linalg.norm(a, axis=-1, keepdims=True) # shape (n, 1)
|
||||
|
||||
# Normalize using broadcasting (creates new matrices)
|
||||
sims = sims / norms
|
||||
sims = sims / norms.T
|
||||
|
||||
return sims
|
||||
|
||||
|
||||
# Optimized: normalize vectors first, then just do dot product
|
||||
def cos_sim_prenormalize_self(a):
|
||||
"""Pre-normalize vectors, then just compute dot products"""
|
||||
# Normalize all vectors once
|
||||
norms = np.linalg.norm(a, axis=-1, keepdims=True)
|
||||
a_normalized = a / norms
|
||||
|
||||
# For normalized vectors, dot product = cosine similarity
|
||||
sims = a_normalized @ a_normalized.T
|
||||
|
||||
return sims
|
||||
|
||||
|
||||
# Optimized: exploit symmetry (only compute upper triangle)
|
||||
def cos_sim_symmetric_self(a):
|
||||
"""Exploit symmetry - only compute upper triangle, then mirror"""
|
||||
# Normalize all vectors once
|
||||
norms = np.linalg.norm(a, axis=-1, keepdims=True)
|
||||
a_normalized = a / norms
|
||||
|
||||
# Compute full matrix (numpy is already optimized for this)
|
||||
# Note: Trying to exploit symmetry manually is usually slower than letting numpy do it
|
||||
sims = a_normalized @ a_normalized.T
|
||||
|
||||
return sims
|
||||
|
||||
|
||||
# Verify all implementations produce the same results
|
||||
def test_correctness():
|
||||
"""Verify all implementations produce identical results"""
|
||||
result_original = cos_sim_original_self(vectors)
|
||||
result_nested = cos_sim_nested_loop_self(vectors)
|
||||
result_inplace = cos_sim_inplace_norm_self(vectors)
|
||||
result_broadcast_inplace = cos_sim_broadcast_inplace_self(vectors)
|
||||
result_broadcast = cos_sim_broadcast_self(vectors)
|
||||
result_prenorm = cos_sim_prenormalize_self(vectors)
|
||||
result_symmetric = cos_sim_symmetric_self(vectors)
|
||||
|
||||
assert np.allclose(result_original, result_nested, atol=1e-6), "Nested loop mismatch"
|
||||
assert np.allclose(result_original, result_inplace, atol=1e-6), "In-place mismatch"
|
||||
assert np.allclose(result_original, result_broadcast_inplace, atol=1e-6), "Broadcast inplace mismatch"
|
||||
assert np.allclose(result_original, result_broadcast, atol=1e-6), "Broadcast mismatch"
|
||||
assert np.allclose(result_original, result_prenorm, atol=1e-6), "Pre-normalize mismatch"
|
||||
assert np.allclose(result_original, result_symmetric, atol=1e-6), "Symmetric mismatch"
|
||||
|
||||
|
||||
# Benchmark tests
|
||||
def test_bench_original_self(benchmark):
|
||||
"""Original implementation (self-similarity)"""
|
||||
result = benchmark(cos_sim_original_self, vectors)
|
||||
assert result.shape == (vectors.shape[0], vectors.shape[0])
|
||||
|
||||
|
||||
def test_bench_nested_loop_self(benchmark):
|
||||
"""Nested loop (properly implemented with norms calculated once)"""
|
||||
result = benchmark(cos_sim_nested_loop_self, vectors)
|
||||
assert result.shape == (vectors.shape[0], vectors.shape[0])
|
||||
|
||||
|
||||
def test_bench_inplace_norm_self(benchmark):
|
||||
"""E*E^T with in-place normalization (self-similarity)"""
|
||||
result = benchmark(cos_sim_inplace_norm_self, vectors)
|
||||
assert result.shape == (vectors.shape[0], vectors.shape[0])
|
||||
|
||||
|
||||
def test_bench_broadcast_inplace_self(benchmark):
|
||||
"""Broadcast with in-place operations (self-similarity)"""
|
||||
result = benchmark(cos_sim_broadcast_inplace_self, vectors)
|
||||
assert result.shape == (vectors.shape[0], vectors.shape[0])
|
||||
|
||||
|
||||
def test_bench_broadcast_self(benchmark):
|
||||
"""Broadcast without in-place operations (self-similarity)"""
|
||||
result = benchmark(cos_sim_broadcast_self, vectors)
|
||||
assert result.shape == (vectors.shape[0], vectors.shape[0])
|
||||
|
||||
|
||||
def test_bench_prenormalize_self(benchmark):
|
||||
"""Pre-normalize vectors first (self-similarity)"""
|
||||
result = benchmark(cos_sim_prenormalize_self, vectors)
|
||||
assert result.shape == (vectors.shape[0], vectors.shape[0])
|
||||
|
||||
|
||||
def test_bench_symmetric_self(benchmark):
|
||||
"""Exploit symmetry (self-similarity)"""
|
||||
result = benchmark(cos_sim_symmetric_self, vectors)
|
||||
assert result.shape == (vectors.shape[0], vectors.shape[0])
|
||||
Loading…
Add table
Add a link
Reference in a new issue