feat: create deployment scripts

This commit is contained in:
nobody 2025-11-02 13:09:23 -08:00
commit 8d5bce4bfb
Signed by: GrocerPublishAgent
GPG key ID: D460CD54A9E3AB86
22 changed files with 2697 additions and 74 deletions

1
CLAUDE.md Normal file
View file

@ -0,0 +1 @@
use `uv run python3` inside api/ folder

2
api/.gitignore vendored
View file

@ -10,3 +10,5 @@ ENV/
# NLTK Data (uncomment if you want to download on each deployment) # NLTK Data (uncomment if you want to download on each deployment)
nltk_data/ nltk_data/
models_cache/
genfiles

View file

@ -1,3 +1,18 @@
# Text Salience API
## Run API
```bash
uv run flask --app salience run uv run flask --app salience run
```
## Benchmarks
```bash
# Generate embeddings
uv run python3 benchmarks/generate_embeddings.py
# Run benchmarks
uv run pytest benchmarks/test_bench_cosine_sim.py --benchmark-json=benchmarks/genfiles/benchmark_results.json
# Visualize results
uv run python3 benchmarks/visualize_benchmarks.py benchmarks/genfiles/benchmark_results.json
```

View file

@ -0,0 +1,34 @@
import sys
import os
import numpy as np
# Add the parent directory to the path so we can import salience
script_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(script_dir)
sys.path.insert(0, parent_dir)
from salience.salience import models, get_sentences
# Load the transcript
transcript_path = os.path.join(parent_dir, 'transcript-1.txt')
with open(transcript_path, 'r') as f:
source_text = f.read()
# Get sentences and encode them
print("Loading transcript and encoding sentences...")
sentences, sentence_ranges = get_sentences(source_text)
print(f"Number of sentences: {len(sentences)}")
# Use the default model for comparison
model_name = 'all-mpnet-base-v2'
model = models[model_name]
vectors = model.encode(sentences)
print(f"Vector shape: {vectors.shape}")
# Save the embeddings to genfiles directory
genfiles_dir = os.path.join(script_dir, 'genfiles')
os.makedirs(genfiles_dir, exist_ok=True)
output_path = os.path.join(genfiles_dir, 'embeddings.npy')
np.save(output_path, vectors)
print(f"\nEmbeddings saved to: {output_path}")
print(f"File size: {os.path.getsize(output_path) / 1024 / 1024:.2f} MB")

View file

@ -0,0 +1,113 @@
"""
Benchmark different cosine similarity implementations using pytest-benchmark.
First run: python generate_embeddings.py
Then run: pytest test_bench_cosine_sim.py --benchmark-json=genfiles/benchmark_results.json
To visualize: python visualize_benchmarks.py genfiles/benchmark_results.json
"""
import os
import numpy as np
import pytest
# Load pre-generated embeddings once for all tests
script_dir = os.path.dirname(os.path.abspath(__file__))
embeddings_path = os.path.join(script_dir, 'genfiles', 'embeddings.npy')
vectors = np.load(embeddings_path)
# Original cos_sim function from salience.py
def cos_sim_original(a, b):
sims = a @ b.T
a_norm = np.linalg.norm(a, axis=-1)
b_norm = np.linalg.norm(b, axis=-1)
a_normalized = (sims.T / a_norm.T).T
sims = a_normalized / b_norm
return sims
# Nested for loop version
def cos_sim_nested_loop(a, b):
n = a.shape[0]
m = b.shape[0]
sims = np.zeros((n, m))
for i in range(n):
for j in range(m):
dot_product = np.dot(a[i], b[j])
norm_a = np.linalg.norm(a[i])
norm_b = np.linalg.norm(b[j])
sims[i, j] = dot_product / (norm_a * norm_b)
return sims
# E*E^T with manual in-place normalization
def cos_sim_inplace_norm(a, b):
# Compute raw dot products
sims = a @ b.T
# Compute norms once
a_norms = np.linalg.norm(a, axis=-1)
b_norms = np.linalg.norm(b, axis=-1)
# Normalize in place
for i in range(sims.shape[0]):
for j in range(sims.shape[1]):
sims[i, j] = sims[i, j] / (a_norms[i] * b_norms[j])
return sims
# Broadcast division with in-place operations
def cos_sim_broadcast_inplace(a, b):
# Compute raw dot products
sims = a @ b.T
# Compute norms once
a_norms = np.linalg.norm(a, axis=-1, keepdims=True) # shape (n, 1)
b_norms = np.linalg.norm(b, axis=-1, keepdims=True) # shape (m, 1)
# Divide by a_norms (broadcasting across columns)
sims /= a_norms
# Divide by b_norms.T (broadcasting across rows)
sims /= b_norms.T
return sims
# Verify all implementations produce the same results
def test_correctness():
"""Verify all implementations produce identical results"""
result_original = cos_sim_original(vectors, vectors)
result_nested = cos_sim_nested_loop(vectors, vectors)
result_inplace = cos_sim_inplace_norm(vectors, vectors)
result_broadcast = cos_sim_broadcast_inplace(vectors, vectors)
assert np.allclose(result_original, result_nested, atol=1e-6)
assert np.allclose(result_original, result_inplace, atol=1e-6)
assert np.allclose(result_original, result_broadcast, atol=1e-6)
# Benchmark tests
def test_bench_original(benchmark):
"""Original vectorized implementation"""
result = benchmark(cos_sim_original, vectors, vectors)
assert result.shape == (vectors.shape[0], vectors.shape[0])
def test_bench_nested_loop(benchmark):
"""Nested loop implementation"""
result = benchmark(cos_sim_nested_loop, vectors, vectors)
assert result.shape == (vectors.shape[0], vectors.shape[0])
def test_bench_inplace_norm(benchmark):
"""E*E^T with in-place normalization"""
result = benchmark(cos_sim_inplace_norm, vectors, vectors)
assert result.shape == (vectors.shape[0], vectors.shape[0])
def test_bench_broadcast_inplace(benchmark):
"""Broadcast with in-place operations"""
result = benchmark(cos_sim_broadcast_inplace, vectors, vectors)
assert result.shape == (vectors.shape[0], vectors.shape[0])

View file

@ -0,0 +1,183 @@
"""
Benchmark different cosine similarity implementations for SELF-SIMILARITY (A vs A).
This specialized version only computes norms once since we're comparing A with itself.
First run: python generate_embeddings.py
Then run: pytest test_bench_self_cosine_sim.py --benchmark-json=genfiles/benchmark_self_results.json
To visualize: python visualize_benchmarks.py genfiles/benchmark_self_results.json
"""
import os
import numpy as np
import pytest
# Load pre-generated embeddings once for all tests
script_dir = os.path.dirname(os.path.abspath(__file__))
embeddings_path = os.path.join(script_dir, 'genfiles', 'embeddings.npy')
vectors = np.load(embeddings_path)
# Original cos_sim function adapted for self-similarity
def cos_sim_original_self(a):
"""Original implementation specialized for self-similarity"""
sims = a @ a.T
norms = np.linalg.norm(a, axis=-1)
a_normalized = (sims.T / norms.T).T
sims = a_normalized / norms
return sims
# Nested for loop version - PROPERLY IMPLEMENTED (norms calculated once)
def cos_sim_nested_loop_self(a):
"""Naive nested loop but with norms calculated once using numpy"""
n = a.shape[0]
sims = np.zeros((n, n))
# Calculate ALL norms once using vectorized numpy (not in the loop!)
norms = np.linalg.norm(a, axis=-1)
for i in range(n):
for j in range(n):
dot_product = np.dot(a[i], a[j])
sims[i, j] = dot_product / (norms[i] * norms[j])
return sims
# E*E^T with manual in-place normalization
def cos_sim_inplace_norm_self(a):
"""In-place normalization specialized for self-similarity"""
# Compute raw dot products
sims = a @ a.T
# Compute norms ONCE (not separate a_norms and b_norms)
norms = np.linalg.norm(a, axis=-1)
# Normalize in place
for i in range(sims.shape[0]):
for j in range(sims.shape[1]):
sims[i, j] = sims[i, j] / (norms[i] * norms[j])
return sims
# Broadcast division with in-place operations
def cos_sim_broadcast_inplace_self(a):
"""Broadcast in-place specialized for self-similarity"""
# Compute raw dot products
sims = a @ a.T
# Compute norms ONCE with keepdims for broadcasting
norms = np.linalg.norm(a, axis=-1, keepdims=True) # shape (n, 1)
# Normalize in-place using broadcasting
# Divide by norms (broadcasting across columns)
sims /= norms
# Divide by norms.T (broadcasting across rows)
sims /= norms.T
return sims
# Broadcast division without in-place operations
def cos_sim_broadcast_self(a):
"""Broadcast without in-place operations - allocates new matrices"""
# Compute raw dot products
sims = a @ a.T
# Compute norms ONCE with keepdims for broadcasting
norms = np.linalg.norm(a, axis=-1, keepdims=True) # shape (n, 1)
# Normalize using broadcasting (creates new matrices)
sims = sims / norms
sims = sims / norms.T
return sims
# Optimized: normalize vectors first, then just do dot product
def cos_sim_prenormalize_self(a):
"""Pre-normalize vectors, then just compute dot products"""
# Normalize all vectors once
norms = np.linalg.norm(a, axis=-1, keepdims=True)
a_normalized = a / norms
# For normalized vectors, dot product = cosine similarity
sims = a_normalized @ a_normalized.T
return sims
# Optimized: exploit symmetry (only compute upper triangle)
def cos_sim_symmetric_self(a):
"""Exploit symmetry - only compute upper triangle, then mirror"""
# Normalize all vectors once
norms = np.linalg.norm(a, axis=-1, keepdims=True)
a_normalized = a / norms
# Compute full matrix (numpy is already optimized for this)
# Note: Trying to exploit symmetry manually is usually slower than letting numpy do it
sims = a_normalized @ a_normalized.T
return sims
# Verify all implementations produce the same results
def test_correctness():
"""Verify all implementations produce identical results"""
result_original = cos_sim_original_self(vectors)
result_nested = cos_sim_nested_loop_self(vectors)
result_inplace = cos_sim_inplace_norm_self(vectors)
result_broadcast_inplace = cos_sim_broadcast_inplace_self(vectors)
result_broadcast = cos_sim_broadcast_self(vectors)
result_prenorm = cos_sim_prenormalize_self(vectors)
result_symmetric = cos_sim_symmetric_self(vectors)
assert np.allclose(result_original, result_nested, atol=1e-6), "Nested loop mismatch"
assert np.allclose(result_original, result_inplace, atol=1e-6), "In-place mismatch"
assert np.allclose(result_original, result_broadcast_inplace, atol=1e-6), "Broadcast inplace mismatch"
assert np.allclose(result_original, result_broadcast, atol=1e-6), "Broadcast mismatch"
assert np.allclose(result_original, result_prenorm, atol=1e-6), "Pre-normalize mismatch"
assert np.allclose(result_original, result_symmetric, atol=1e-6), "Symmetric mismatch"
# Benchmark tests
def test_bench_original_self(benchmark):
"""Original implementation (self-similarity)"""
result = benchmark(cos_sim_original_self, vectors)
assert result.shape == (vectors.shape[0], vectors.shape[0])
def test_bench_nested_loop_self(benchmark):
"""Nested loop (properly implemented with norms calculated once)"""
result = benchmark(cos_sim_nested_loop_self, vectors)
assert result.shape == (vectors.shape[0], vectors.shape[0])
def test_bench_inplace_norm_self(benchmark):
"""E*E^T with in-place normalization (self-similarity)"""
result = benchmark(cos_sim_inplace_norm_self, vectors)
assert result.shape == (vectors.shape[0], vectors.shape[0])
def test_bench_broadcast_inplace_self(benchmark):
"""Broadcast with in-place operations (self-similarity)"""
result = benchmark(cos_sim_broadcast_inplace_self, vectors)
assert result.shape == (vectors.shape[0], vectors.shape[0])
def test_bench_broadcast_self(benchmark):
"""Broadcast without in-place operations (self-similarity)"""
result = benchmark(cos_sim_broadcast_self, vectors)
assert result.shape == (vectors.shape[0], vectors.shape[0])
def test_bench_prenormalize_self(benchmark):
"""Pre-normalize vectors first (self-similarity)"""
result = benchmark(cos_sim_prenormalize_self, vectors)
assert result.shape == (vectors.shape[0], vectors.shape[0])
def test_bench_symmetric_self(benchmark):
"""Exploit symmetry (self-similarity)"""
result = benchmark(cos_sim_symmetric_self, vectors)
assert result.shape == (vectors.shape[0], vectors.shape[0])

View file

@ -0,0 +1,198 @@
"""
Legacy benchmark using timeit library instead of pytest-benchmark.
This script uses Python's built-in timeit module to compare different cosine similarity
implementations. It's kept for comparison purposes to verify that pytest-benchmark
produces similar performance results to timeit.
First run: python 01-generate_embeddings.py
Then run: python using_timeit.py
"""
import os
import timeit
import numpy as np
# Load pre-generated embeddings
script_dir = os.path.dirname(os.path.abspath(__file__))
embeddings_path = os.path.join(script_dir, 'genfiles', 'embeddings.npy')
vectors = np.load(embeddings_path)
print(f"Loaded embeddings with shape: {vectors.shape}")
print()
# Original cos_sim function adapted for self-similarity
def cos_sim_original_self(a):
"""Original implementation specialized for self-similarity"""
sims = a @ a.T
norms = np.linalg.norm(a, axis=-1)
a_normalized = (sims.T / norms.T).T
sims = a_normalized / norms
return sims
# Nested for loop version - PROPERLY IMPLEMENTED (norms calculated once)
def cos_sim_nested_loop_self(a):
"""Naive nested loop but with norms calculated once using numpy"""
n = a.shape[0]
sims = np.zeros((n, n))
# Calculate ALL norms once using vectorized numpy (not in the loop!)
norms = np.linalg.norm(a, axis=-1)
for i in range(n):
for j in range(n):
dot_product = np.dot(a[i], a[j])
sims[i, j] = dot_product / (norms[i] * norms[j])
return sims
# E*E^T with manual in-place normalization
def cos_sim_inplace_norm_self(a):
"""In-place normalization specialized for self-similarity"""
# Compute raw dot products
sims = a @ a.T
# Compute norms ONCE (not separate a_norms and b_norms)
norms = np.linalg.norm(a, axis=-1)
# Normalize in place
for i in range(sims.shape[0]):
for j in range(sims.shape[1]):
sims[i, j] = sims[i, j] / (norms[i] * norms[j])
return sims
# Broadcast division with in-place operations
def cos_sim_broadcast_inplace_self(a):
"""Broadcast in-place specialized for self-similarity"""
# Compute raw dot products
sims = a @ a.T
# Compute norms ONCE with keepdims for broadcasting
norms = np.linalg.norm(a, axis=-1, keepdims=True) # shape (n, 1)
# Normalize in-place using broadcasting
# Divide by norms (broadcasting across columns)
sims /= norms
# Divide by norms.T (broadcasting across rows)
sims /= norms.T
return sims
# Optimized: normalize vectors first, then just do dot product
def cos_sim_prenormalize_self(a):
"""Pre-normalize vectors, then just compute dot products"""
# Normalize all vectors once
norms = np.linalg.norm(a, axis=-1, keepdims=True)
a_normalized = a / norms
# For normalized vectors, dot product = cosine similarity
sims = a_normalized @ a_normalized.T
return sims
# Verify all implementations produce the same results
print("Verifying implementations produce identical results...")
result_original = cos_sim_original_self(vectors)
result_nested = cos_sim_nested_loop_self(vectors)
result_inplace = cos_sim_inplace_norm_self(vectors)
result_broadcast = cos_sim_broadcast_inplace_self(vectors)
result_prenorm = cos_sim_prenormalize_self(vectors)
print(f"Original vs Nested Loop - Max difference: {np.max(np.abs(result_original - result_nested))}")
print(f"Original vs In-place Norm - Max difference: {np.max(np.abs(result_original - result_inplace))}")
print(f"Original vs Broadcast In-place - Max difference: {np.max(np.abs(result_original - result_broadcast))}")
print(f"Original vs Pre-normalize - Max difference: {np.max(np.abs(result_original - result_prenorm))}")
print()
# Benchmark each implementation
print("=" * 60)
print("PERFORMANCE BENCHMARK")
print("=" * 60)
print()
num_runs = 100
print(f"Running each implementation {num_runs} times...")
print()
# Benchmark original implementation
time_original = timeit.timeit(
lambda: cos_sim_original_self(vectors),
number=num_runs
)
print(f"Original implementation (self-similarity):")
print(f" Total time: {time_original:.4f} seconds")
print(f" Average per run: {time_original/num_runs*1000:.4f} ms")
print()
# Benchmark nested loop implementation
time_nested = timeit.timeit(
lambda: cos_sim_nested_loop_self(vectors),
number=num_runs
)
print(f"Nested loop (norms calculated once):")
print(f" Total time: {time_nested:.4f} seconds")
print(f" Average per run: {time_nested/num_runs*1000:.4f} ms")
print(f" Slowdown vs original: {time_nested/time_original:.2f}x")
print()
# Benchmark in-place normalization implementation
time_inplace = timeit.timeit(
lambda: cos_sim_inplace_norm_self(vectors),
number=num_runs
)
print(f"E*E^T with in-place normalization:")
print(f" Total time: {time_inplace:.4f} seconds")
print(f" Average per run: {time_inplace/num_runs*1000:.4f} ms")
print(f" Slowdown vs original: {time_inplace/time_original:.2f}x")
print()
# Benchmark broadcast in-place implementation
time_broadcast = timeit.timeit(
lambda: cos_sim_broadcast_inplace_self(vectors),
number=num_runs
)
print(f"Broadcast with in-place operations:")
print(f" Total time: {time_broadcast:.4f} seconds")
print(f" Average per run: {time_broadcast/num_runs*1000:.4f} ms")
print(f" Speedup vs original: {time_original/time_broadcast:.2f}x")
print()
# Benchmark pre-normalize implementation
time_prenorm = timeit.timeit(
lambda: cos_sim_prenormalize_self(vectors),
number=num_runs
)
print(f"Pre-normalize vectors:")
print(f" Total time: {time_prenorm:.4f} seconds")
print(f" Average per run: {time_prenorm/num_runs*1000:.4f} ms")
print(f" Speedup vs original: {time_original/time_prenorm:.2f}x")
print()
# Summary
print("=" * 60)
print("SUMMARY")
print("=" * 60)
fastest = min(time_original, time_nested, time_inplace, time_broadcast, time_prenorm)
print(f"Fastest implementation: ", end="")
if fastest == time_original:
print("Original (self-similarity)")
elif fastest == time_nested:
print("Nested loop")
elif fastest == time_inplace:
print("E*E^T with in-place normalization")
elif fastest == time_broadcast:
print("Broadcast with in-place operations")
else:
print("Pre-normalize vectors")
print()
print(f"Performance ranking:")
times = [
("Original (self-similarity)", time_original),
("Nested loop", time_nested),
("E*E^T with in-place norm", time_inplace),
("Broadcast in-place", time_broadcast),
("Pre-normalize", time_prenorm)
]
times.sort(key=lambda x: x[1])
for i, (name, time) in enumerate(times, 1):
print(f" {i}. {name}: {time/num_runs*1000:.4f} ms per run ({time/fastest:.2f}x vs fastest)")

View file

@ -0,0 +1,150 @@
"""
Visualize pytest-benchmark results with violin plots.
Usage: python visualize_benchmarks.py benchmark_results.json
"""
import sys
import json
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
if len(sys.argv) < 2:
print("Usage: python visualize_benchmarks.py benchmark_results.json")
sys.exit(1)
# Load benchmark results
with open(sys.argv[1], 'r') as f:
data = json.load(f)
# Extract benchmark data
benchmarks = data['benchmarks']
# Create a list to store all timing data
timing_data = []
for bench in benchmarks:
name = bench['name'].replace('test_bench_', '').replace('_', ' ').title()
stats = bench['stats']
# Require actual timing data
if 'data' not in stats:
print(f"ERROR: No raw timing data found for {name}", file=sys.stderr)
print(f"Benchmark must be run with --benchmark-save-data to store raw data", file=sys.stderr)
sys.exit(1)
times = np.array(stats['data']) * 1000 # Convert to ms
for iteration, time in enumerate(times):
timing_data.append({
'Implementation': name,
'Iteration': iteration,
'Time (ms)': time
})
# Create DataFrame
df = pd.DataFrame(timing_data)
# Calculate summary statistics for ranking
summary = df.groupby('Implementation')['Time (ms)'].agg(['mean', 'median', 'std', 'min', 'max'])
slowest_mean = summary['mean'].max()
summary['Speedup vs Slowest'] = slowest_mean / summary['mean']
summary_sorted = summary.sort_values('mean')
# Get unique implementations
implementations = df['Implementation'].unique()
num_impls = len(implementations)
# Define color palette for consistency - generate enough colors dynamically
colors = sns.color_palette("husl", num_impls)
impl_colors = {impl: colors[idx] for idx, impl in enumerate(implementations)}
# Create individual violin plots for each implementation
# Dynamically determine grid size
cols = min(3, num_impls)
rows = (num_impls + cols - 1) // cols # Ceiling division
fig, axes = plt.subplots(rows, cols, figsize=(7*cols, 5*rows))
if num_impls == 1:
axes = [axes]
else:
axes = axes.flatten()
for idx, impl in enumerate(implementations):
impl_data = df[df['Implementation'] == impl]
sns.violinplot(data=impl_data, y='Time (ms)', ax=axes[idx], inner='box', color=impl_colors[impl])
axes[idx].set_title(f'{impl}', fontsize=12, fontweight='bold')
axes[idx].set_ylabel('Time (ms)', fontsize=10)
axes[idx].grid(True, alpha=0.3, axis='y')
# Add mean line
mean_val = impl_data['Time (ms)'].mean()
axes[idx].axhline(mean_val, color='red', linestyle='--', linewidth=1, alpha=0.7, label=f'Mean: {mean_val:.4f} ms')
axes[idx].legend(fontsize=8)
# Hide any extra empty subplots
for idx in range(num_impls, len(axes)):
axes[idx].set_visible(False)
plt.tight_layout()
output_file_individual = sys.argv[1].replace('.json', '_individual.png')
plt.savefig(output_file_individual, dpi=300, bbox_inches='tight')
print(output_file_individual)
# Create combined plot for the fastest implementations
fig2, ax = plt.subplots(1, 1, figsize=(10, 6))
# Pick the top 3 fastest implementations (or fewer if there aren't that many)
num_fast = min(3, num_impls)
fast_implementations = list(summary_sorted.head(num_fast).index)
df_fast = df[df['Implementation'].isin(fast_implementations)]
# Use the same colors as in individual plots
palette = [impl_colors[impl] for impl in fast_implementations]
sns.violinplot(data=df_fast, x='Implementation', y='Time (ms)', ax=ax, inner='box', palette=palette)
ax.set_title(f'Cosine Similarity: Top {num_fast} Fastest Implementations', fontsize=14, fontweight='bold')
ax.set_xlabel('Implementation', fontsize=12)
ax.set_ylabel('Time (ms)', fontsize=12)
ax.grid(True, alpha=0.3, axis='y')
# Add mean values as text
for impl in fast_implementations:
impl_data = df_fast[df_fast['Implementation'] == impl]
mean_val = impl_data['Time (ms)'].mean()
x_pos = list(fast_implementations).index(impl)
ax.text(x_pos, mean_val, f'{mean_val:.4f} ms', ha='center', va='bottom', fontsize=10, fontweight='bold')
plt.tight_layout()
output_file_combined = sys.argv[1].replace('.json', '_fast_comparison.png')
plt.savefig(output_file_combined, dpi=300, bbox_inches='tight')
print(f"Fast implementations comparison saved to: {output_file_combined}")
# Create time series scatter plots
fig3, axes3 = plt.subplots(rows, cols, figsize=(7*cols, 5*rows))
if num_impls == 1:
axes3 = [axes3]
else:
axes3 = axes3.flatten()
for idx, impl in enumerate(implementations):
impl_data = df[df['Implementation'] == impl].sort_values('Iteration')
axes3[idx].scatter(impl_data['Iteration'], impl_data['Time (ms)'], alpha=0.5, s=10, color=impl_colors[impl])
axes3[idx].set_title(f'{impl}', fontsize=12, fontweight='bold')
axes3[idx].set_xlabel('Iteration', fontsize=10)
axes3[idx].set_ylabel('Time (ms)', fontsize=10)
axes3[idx].grid(True, alpha=0.3)
# Add mean line
mean_val = impl_data['Time (ms)'].mean()
axes3[idx].axhline(mean_val, color='red', linestyle='--', linewidth=1, alpha=0.7, label=f'Mean: {mean_val:.4f} ms')
axes3[idx].legend(fontsize=8)
# Hide any extra empty subplots
for idx in range(num_impls, len(axes3)):
axes3[idx].set_visible(False)
plt.tight_layout()
output_file_timeseries = sys.argv[1].replace('.json', '_timeseries.png')
plt.savefig(output_file_timeseries, dpi=300, bbox_inches='tight')
print(f"Time series scatter plots saved to: {output_file_timeseries}")
print("\nAll plots generated successfully!")

View file

@ -11,10 +11,16 @@ requires-python = ">=3.11"
dependencies = [ dependencies = [
"flask>=2.3.2,<3.0.0", "flask>=2.3.2,<3.0.0",
"flask-cors>=4.0.0,<5.0.0", "flask-cors>=4.0.0,<5.0.0",
"gunicorn>=22.0.0,<23.0.0",
"transformers>=4.30.2,<5.0.0", "transformers>=4.30.2,<5.0.0",
"nltk>=3.8.1,<4.0.0", "nltk>=3.8.1,<4.0.0",
"sentence-transformers>=2.2.2,<3.0.0", "sentence-transformers>=2.2.2,<3.0.0",
"numpy>=1.25.0,<2.0.0", "numpy>=1.25.0,<2.0.0",
"pytest>=8.4.2",
"pytest-benchmark>=5.2.0",
"matplotlib>=3.10.7",
"seaborn>=0.13.2",
"pandas>=2.3.3",
] ]
[build-system] [build-system]

View file

@ -8,6 +8,7 @@ import os
# Set NLTK data path to project directory # Set NLTK data path to project directory
PROJECT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) PROJECT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
NLTK_DATA_DIR = os.path.join(PROJECT_DIR, 'nltk_data') NLTK_DATA_DIR = os.path.join(PROJECT_DIR, 'nltk_data')
TRANSFORMERS_CACHE_DIR = os.path.join(PROJECT_DIR, 'models_cache')
# Add to NLTK's search path # Add to NLTK's search path
nltk.data.path.insert(0, NLTK_DATA_DIR) nltk.data.path.insert(0, NLTK_DATA_DIR)
@ -28,12 +29,14 @@ AVAILABLE_MODELS = {
} }
# On clustering # On clustering
# all-mpnet-base-v2: 40.03
# mixedbread-ai/mxbai-embed-large-v1: 46.71 # mixedbread-ai/mxbai-embed-large-v1: 46.71
# gte-large-en-v1.5: 47.95 # gte-large-en-v1.5: 47.95
# Qwen/Qwen3-Embedding-0.6B: 52.33 # Qwen/Qwen3-Embedding-0.6B: 52.33
# Qwen/Qwen3-Embedding-4B: 57.15 # Qwen/Qwen3-Embedding-4B: 57.15
# On STS # On STS
# all-mpnet-base-v2: 58.17
# gte-large-en-v1.5: 81.43 # gte-large-en-v1.5: 81.43
# Qwen/Qwen3-Embedding-0.6B: 76.17 # Qwen/Qwen3-Embedding-0.6B: 76.17
# Qwen/Qwen3-Embedding-4B: 80.86 # Qwen/Qwen3-Embedding-4B: 80.86
@ -43,23 +46,22 @@ AVAILABLE_MODELS = {
print("Loading sentence transformer models...") print("Loading sentence transformer models...")
models = {} models = {}
models['all-mpnet-base-v2'] = SentenceTransformer('all-mpnet-base-v2') models['all-mpnet-base-v2'] = SentenceTransformer('all-mpnet-base-v2', cache_folder=TRANSFORMERS_CACHE_DIR)
print("Loading Alibaba-NLP/gte-large-en-v1.5") print("Loading Alibaba-NLP/gte-large-en-v1.5")
models['gte-large-en-v1.5'] = SentenceTransformer('Alibaba-NLP/gte-large-en-v1.5', trust_remote_code=True) models['gte-large-en-v1.5'] = SentenceTransformer('Alibaba-NLP/gte-large-en-v1.5', trust_remote_code=True, cache_folder=TRANSFORMERS_CACHE_DIR)
#print("Loading Qwen/Qwen3-Embedding-4B") #print("Loading Qwen/Qwen3-Embedding-4B")
#models['qwen3-embedding-4b'] = SentenceTransformer('Qwen/Qwen3-Embedding-4B', trust_remote_code=True) #models['qwen3-embedding-4b'] = SentenceTransformer('Qwen/Qwen3-Embedding-4B', trust_remote_code=True, cache_folder=TRANSFORMERS_CACHE_DIR)
print("Loading mixedbread-ai/mxbai-embed-large-v1") print("Loading mixedbread-ai/mxbai-embed-large-v1")
models["mxbai-embed-large-v1"] = SentenceTransformer('mixedbread-ai/mxbai-embed-large-v1') models["mxbai-embed-large-v1"] = SentenceTransformer('mixedbread-ai/mxbai-embed-large-v1', cache_folder=TRANSFORMERS_CACHE_DIR)
print("All models loaded!") print("All models loaded!")
sent_detector = nltk.data.load('tokenizers/punkt/english.pickle') sent_detector = nltk.data.load('tokenizers/punkt/english.pickle')
def cos_sim(a, b): def cos_sim(a):
sims = a @ b.T sims = a @ a.T
a_norm = np.linalg.norm(a, axis=-1) a_norm = np.linalg.norm(a, axis=-1, keepdims=True)
b_norm = np.linalg.norm(b, axis=-1) sims /= a_norm
a_normalized = (sims.T / a_norm.T).T sims /= a_norm.T
sims = a_normalized / b_norm
return sims return sims
def degree_power(A, k): def degree_power(A, k):
@ -79,7 +81,7 @@ def get_sentences(source_text):
def text_rank(sentences, model_name='all-mpnet-base-v2'): def text_rank(sentences, model_name='all-mpnet-base-v2'):
model = models[model_name] model = models[model_name]
vectors = model.encode(sentences) vectors = model.encode(sentences)
adjacency = torch.tensor(cos_sim(vectors, vectors)).fill_diagonal_(0.) adjacency = torch.tensor(cos_sim(vectors)).fill_diagonal_(0.)
adjacency[adjacency < 0] = 0 adjacency[adjacency < 0] = 0
return normalized_adjacency(adjacency) return normalized_adjacency(adjacency)

499
api/uv.lock generated
View file

@ -117,6 +117,97 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335 }, { url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335 },
] ]
[[package]]
name = "contourpy"
version = "1.3.3"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "numpy" },
]
sdist = { url = "https://files.pythonhosted.org/packages/58/01/1253e6698a07380cd31a736d248a3f2a50a7c88779a1813da27503cadc2a/contourpy-1.3.3.tar.gz", hash = "sha256:083e12155b210502d0bca491432bb04d56dc3432f95a979b429f2848c3dbe880", size = 13466174 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/91/2e/c4390a31919d8a78b90e8ecf87cd4b4c4f05a5b48d05ec17db8e5404c6f4/contourpy-1.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:709a48ef9a690e1343202916450bc48b9e51c049b089c7f79a267b46cffcdaa1", size = 288773 },
{ url = "https://files.pythonhosted.org/packages/0d/44/c4b0b6095fef4dc9c420e041799591e3b63e9619e3044f7f4f6c21c0ab24/contourpy-1.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:23416f38bfd74d5d28ab8429cc4d63fa67d5068bd711a85edb1c3fb0c3e2f381", size = 270149 },
{ url = "https://files.pythonhosted.org/packages/30/2e/dd4ced42fefac8470661d7cb7e264808425e6c5d56d175291e93890cce09/contourpy-1.3.3-cp311-cp311-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:929ddf8c4c7f348e4c0a5a3a714b5c8542ffaa8c22954862a46ca1813b667ee7", size = 329222 },
{ url = "https://files.pythonhosted.org/packages/f2/74/cc6ec2548e3d276c71389ea4802a774b7aa3558223b7bade3f25787fafc2/contourpy-1.3.3-cp311-cp311-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:9e999574eddae35f1312c2b4b717b7885d4edd6cb46700e04f7f02db454e67c1", size = 377234 },
{ url = "https://files.pythonhosted.org/packages/03/b3/64ef723029f917410f75c09da54254c5f9ea90ef89b143ccadb09df14c15/contourpy-1.3.3-cp311-cp311-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:0bf67e0e3f482cb69779dd3061b534eb35ac9b17f163d851e2a547d56dba0a3a", size = 380555 },
{ url = "https://files.pythonhosted.org/packages/5f/4b/6157f24ca425b89fe2eb7e7be642375711ab671135be21e6faa100f7448c/contourpy-1.3.3-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:51e79c1f7470158e838808d4a996fa9bac72c498e93d8ebe5119bc1e6becb0db", size = 355238 },
{ url = "https://files.pythonhosted.org/packages/98/56/f914f0dd678480708a04cfd2206e7c382533249bc5001eb9f58aa693e200/contourpy-1.3.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:598c3aaece21c503615fd59c92a3598b428b2f01bfb4b8ca9c4edeecc2438620", size = 1326218 },
{ url = "https://files.pythonhosted.org/packages/fb/d7/4a972334a0c971acd5172389671113ae82aa7527073980c38d5868ff1161/contourpy-1.3.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:322ab1c99b008dad206d406bb61d014cf0174df491ae9d9d0fac6a6fda4f977f", size = 1392867 },
{ url = "https://files.pythonhosted.org/packages/75/3e/f2cc6cd56dc8cff46b1a56232eabc6feea52720083ea71ab15523daab796/contourpy-1.3.3-cp311-cp311-win32.whl", hash = "sha256:fd907ae12cd483cd83e414b12941c632a969171bf90fc937d0c9f268a31cafff", size = 183677 },
{ url = "https://files.pythonhosted.org/packages/98/4b/9bd370b004b5c9d8045c6c33cf65bae018b27aca550a3f657cdc99acdbd8/contourpy-1.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:3519428f6be58431c56581f1694ba8e50626f2dd550af225f82fb5f5814d2a42", size = 225234 },
{ url = "https://files.pythonhosted.org/packages/d9/b6/71771e02c2e004450c12b1120a5f488cad2e4d5b590b1af8bad060360fe4/contourpy-1.3.3-cp311-cp311-win_arm64.whl", hash = "sha256:15ff10bfada4bf92ec8b31c62bf7c1834c244019b4a33095a68000d7075df470", size = 193123 },
{ url = "https://files.pythonhosted.org/packages/be/45/adfee365d9ea3d853550b2e735f9d66366701c65db7855cd07621732ccfc/contourpy-1.3.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:b08a32ea2f8e42cf1d4be3169a98dd4be32bafe4f22b6c4cb4ba810fa9e5d2cb", size = 293419 },
{ url = "https://files.pythonhosted.org/packages/53/3e/405b59cfa13021a56bba395a6b3aca8cec012b45bf177b0eaf7a202cde2c/contourpy-1.3.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:556dba8fb6f5d8742f2923fe9457dbdd51e1049c4a43fd3986a0b14a1d815fc6", size = 273979 },
{ url = "https://files.pythonhosted.org/packages/d4/1c/a12359b9b2ca3a845e8f7f9ac08bdf776114eb931392fcad91743e2ea17b/contourpy-1.3.3-cp312-cp312-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:92d9abc807cf7d0e047b95ca5d957cf4792fcd04e920ca70d48add15c1a90ea7", size = 332653 },
{ url = "https://files.pythonhosted.org/packages/63/12/897aeebfb475b7748ea67b61e045accdfcf0d971f8a588b67108ed7f5512/contourpy-1.3.3-cp312-cp312-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:b2e8faa0ed68cb29af51edd8e24798bb661eac3bd9f65420c1887b6ca89987c8", size = 379536 },
{ url = "https://files.pythonhosted.org/packages/43/8a/a8c584b82deb248930ce069e71576fc09bd7174bbd35183b7943fb1064fd/contourpy-1.3.3-cp312-cp312-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:626d60935cf668e70a5ce6ff184fd713e9683fb458898e4249b63be9e28286ea", size = 384397 },
{ url = "https://files.pythonhosted.org/packages/cc/8f/ec6289987824b29529d0dfda0d74a07cec60e54b9c92f3c9da4c0ac732de/contourpy-1.3.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4d00e655fcef08aba35ec9610536bfe90267d7ab5ba944f7032549c55a146da1", size = 362601 },
{ url = "https://files.pythonhosted.org/packages/05/0a/a3fe3be3ee2dceb3e615ebb4df97ae6f3828aa915d3e10549ce016302bd1/contourpy-1.3.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:451e71b5a7d597379ef572de31eeb909a87246974d960049a9848c3bc6c41bf7", size = 1331288 },
{ url = "https://files.pythonhosted.org/packages/33/1d/acad9bd4e97f13f3e2b18a3977fe1b4a37ecf3d38d815333980c6c72e963/contourpy-1.3.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:459c1f020cd59fcfe6650180678a9993932d80d44ccde1fa1868977438f0b411", size = 1403386 },
{ url = "https://files.pythonhosted.org/packages/cf/8f/5847f44a7fddf859704217a99a23a4f6417b10e5ab1256a179264561540e/contourpy-1.3.3-cp312-cp312-win32.whl", hash = "sha256:023b44101dfe49d7d53932be418477dba359649246075c996866106da069af69", size = 185018 },
{ url = "https://files.pythonhosted.org/packages/19/e8/6026ed58a64563186a9ee3f29f41261fd1828f527dd93d33b60feca63352/contourpy-1.3.3-cp312-cp312-win_amd64.whl", hash = "sha256:8153b8bfc11e1e4d75bcb0bff1db232f9e10b274e0929de9d608027e0d34ff8b", size = 226567 },
{ url = "https://files.pythonhosted.org/packages/d1/e2/f05240d2c39a1ed228d8328a78b6f44cd695f7ef47beb3e684cf93604f86/contourpy-1.3.3-cp312-cp312-win_arm64.whl", hash = "sha256:07ce5ed73ecdc4a03ffe3e1b3e3c1166db35ae7584be76f65dbbe28a7791b0cc", size = 193655 },
{ url = "https://files.pythonhosted.org/packages/68/35/0167aad910bbdb9599272bd96d01a9ec6852f36b9455cf2ca67bd4cc2d23/contourpy-1.3.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:177fb367556747a686509d6fef71d221a4b198a3905fe824430e5ea0fda54eb5", size = 293257 },
{ url = "https://files.pythonhosted.org/packages/96/e4/7adcd9c8362745b2210728f209bfbcf7d91ba868a2c5f40d8b58f54c509b/contourpy-1.3.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d002b6f00d73d69333dac9d0b8d5e84d9724ff9ef044fd63c5986e62b7c9e1b1", size = 274034 },
{ url = "https://files.pythonhosted.org/packages/73/23/90e31ceeed1de63058a02cb04b12f2de4b40e3bef5e082a7c18d9c8ae281/contourpy-1.3.3-cp313-cp313-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:348ac1f5d4f1d66d3322420f01d42e43122f43616e0f194fc1c9f5d830c5b286", size = 334672 },
{ url = "https://files.pythonhosted.org/packages/ed/93/b43d8acbe67392e659e1d984700e79eb67e2acb2bd7f62012b583a7f1b55/contourpy-1.3.3-cp313-cp313-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:655456777ff65c2c548b7c454af9c6f33f16c8884f11083244b5819cc214f1b5", size = 381234 },
{ url = "https://files.pythonhosted.org/packages/46/3b/bec82a3ea06f66711520f75a40c8fc0b113b2a75edb36aa633eb11c4f50f/contourpy-1.3.3-cp313-cp313-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:644a6853d15b2512d67881586bd03f462c7ab755db95f16f14d7e238f2852c67", size = 385169 },
{ url = "https://files.pythonhosted.org/packages/4b/32/e0f13a1c5b0f8572d0ec6ae2f6c677b7991fafd95da523159c19eff0696a/contourpy-1.3.3-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4debd64f124ca62069f313a9cb86656ff087786016d76927ae2cf37846b006c9", size = 362859 },
{ url = "https://files.pythonhosted.org/packages/33/71/e2a7945b7de4e58af42d708a219f3b2f4cff7386e6b6ab0a0fa0033c49a9/contourpy-1.3.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a15459b0f4615b00bbd1e91f1b9e19b7e63aea7483d03d804186f278c0af2659", size = 1332062 },
{ url = "https://files.pythonhosted.org/packages/12/fc/4e87ac754220ccc0e807284f88e943d6d43b43843614f0a8afa469801db0/contourpy-1.3.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ca0fdcd73925568ca027e0b17ab07aad764be4706d0a925b89227e447d9737b7", size = 1403932 },
{ url = "https://files.pythonhosted.org/packages/a6/2e/adc197a37443f934594112222ac1aa7dc9a98faf9c3842884df9a9d8751d/contourpy-1.3.3-cp313-cp313-win32.whl", hash = "sha256:b20c7c9a3bf701366556e1b1984ed2d0cedf999903c51311417cf5f591d8c78d", size = 185024 },
{ url = "https://files.pythonhosted.org/packages/18/0b/0098c214843213759692cc638fce7de5c289200a830e5035d1791d7a2338/contourpy-1.3.3-cp313-cp313-win_amd64.whl", hash = "sha256:1cadd8b8969f060ba45ed7c1b714fe69185812ab43bd6b86a9123fe8f99c3263", size = 226578 },
{ url = "https://files.pythonhosted.org/packages/8a/9a/2f6024a0c5995243cd63afdeb3651c984f0d2bc727fd98066d40e141ad73/contourpy-1.3.3-cp313-cp313-win_arm64.whl", hash = "sha256:fd914713266421b7536de2bfa8181aa8c699432b6763a0ea64195ebe28bff6a9", size = 193524 },
{ url = "https://files.pythonhosted.org/packages/c0/b3/f8a1a86bd3298513f500e5b1f5fd92b69896449f6cab6a146a5d52715479/contourpy-1.3.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:88df9880d507169449d434c293467418b9f6cbe82edd19284aa0409e7fdb933d", size = 306730 },
{ url = "https://files.pythonhosted.org/packages/3f/11/4780db94ae62fc0c2053909b65dc3246bd7cecfc4f8a20d957ad43aa4ad8/contourpy-1.3.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:d06bb1f751ba5d417047db62bca3c8fde202b8c11fb50742ab3ab962c81e8216", size = 287897 },
{ url = "https://files.pythonhosted.org/packages/ae/15/e59f5f3ffdd6f3d4daa3e47114c53daabcb18574a26c21f03dc9e4e42ff0/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:e4e6b05a45525357e382909a4c1600444e2a45b4795163d3b22669285591c1ae", size = 326751 },
{ url = "https://files.pythonhosted.org/packages/0f/81/03b45cfad088e4770b1dcf72ea78d3802d04200009fb364d18a493857210/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ab3074b48c4e2cf1a960e6bbeb7f04566bf36b1861d5c9d4d8ac04b82e38ba20", size = 375486 },
{ url = "https://files.pythonhosted.org/packages/0c/ba/49923366492ffbdd4486e970d421b289a670ae8cf539c1ea9a09822b371a/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:6c3d53c796f8647d6deb1abe867daeb66dcc8a97e8455efa729516b997b8ed99", size = 388106 },
{ url = "https://files.pythonhosted.org/packages/9f/52/5b00ea89525f8f143651f9f03a0df371d3cbd2fccd21ca9b768c7a6500c2/contourpy-1.3.3-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:50ed930df7289ff2a8d7afeb9603f8289e5704755c7e5c3bbd929c90c817164b", size = 352548 },
{ url = "https://files.pythonhosted.org/packages/32/1d/a209ec1a3a3452d490f6b14dd92e72280c99ae3d1e73da74f8277d4ee08f/contourpy-1.3.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:4feffb6537d64b84877da813a5c30f1422ea5739566abf0bd18065ac040e120a", size = 1322297 },
{ url = "https://files.pythonhosted.org/packages/bc/9e/46f0e8ebdd884ca0e8877e46a3f4e633f6c9c8c4f3f6e72be3fe075994aa/contourpy-1.3.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:2b7e9480ffe2b0cd2e787e4df64270e3a0440d9db8dc823312e2c940c167df7e", size = 1391023 },
{ url = "https://files.pythonhosted.org/packages/b9/70/f308384a3ae9cd2209e0849f33c913f658d3326900d0ff5d378d6a1422d2/contourpy-1.3.3-cp313-cp313t-win32.whl", hash = "sha256:283edd842a01e3dcd435b1c5116798d661378d83d36d337b8dde1d16a5fc9ba3", size = 196157 },
{ url = "https://files.pythonhosted.org/packages/b2/dd/880f890a6663b84d9e34a6f88cded89d78f0091e0045a284427cb6b18521/contourpy-1.3.3-cp313-cp313t-win_amd64.whl", hash = "sha256:87acf5963fc2b34825e5b6b048f40e3635dd547f590b04d2ab317c2619ef7ae8", size = 240570 },
{ url = "https://files.pythonhosted.org/packages/80/99/2adc7d8ffead633234817ef8e9a87115c8a11927a94478f6bb3d3f4d4f7d/contourpy-1.3.3-cp313-cp313t-win_arm64.whl", hash = "sha256:3c30273eb2a55024ff31ba7d052dde990d7d8e5450f4bbb6e913558b3d6c2301", size = 199713 },
{ url = "https://files.pythonhosted.org/packages/72/8b/4546f3ab60f78c514ffb7d01a0bd743f90de36f0019d1be84d0a708a580a/contourpy-1.3.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:fde6c716d51c04b1c25d0b90364d0be954624a0ee9d60e23e850e8d48353d07a", size = 292189 },
{ url = "https://files.pythonhosted.org/packages/fd/e1/3542a9cb596cadd76fcef413f19c79216e002623158befe6daa03dbfa88c/contourpy-1.3.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:cbedb772ed74ff5be440fa8eee9bd49f64f6e3fc09436d9c7d8f1c287b121d77", size = 273251 },
{ url = "https://files.pythonhosted.org/packages/b1/71/f93e1e9471d189f79d0ce2497007731c1e6bf9ef6d1d61b911430c3db4e5/contourpy-1.3.3-cp314-cp314-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:22e9b1bd7a9b1d652cd77388465dc358dafcd2e217d35552424aa4f996f524f5", size = 335810 },
{ url = "https://files.pythonhosted.org/packages/91/f9/e35f4c1c93f9275d4e38681a80506b5510e9327350c51f8d4a5a724d178c/contourpy-1.3.3-cp314-cp314-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:a22738912262aa3e254e4f3cb079a95a67132fc5a063890e224393596902f5a4", size = 382871 },
{ url = "https://files.pythonhosted.org/packages/b5/71/47b512f936f66a0a900d81c396a7e60d73419868fba959c61efed7a8ab46/contourpy-1.3.3-cp314-cp314-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:afe5a512f31ee6bd7d0dda52ec9864c984ca3d66664444f2d72e0dc4eb832e36", size = 386264 },
{ url = "https://files.pythonhosted.org/packages/04/5f/9ff93450ba96b09c7c2b3f81c94de31c89f92292f1380261bd7195bea4ea/contourpy-1.3.3-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f64836de09927cba6f79dcd00fdd7d5329f3fccc633468507079c829ca4db4e3", size = 363819 },
{ url = "https://files.pythonhosted.org/packages/3e/a6/0b185d4cc480ee494945cde102cb0149ae830b5fa17bf855b95f2e70ad13/contourpy-1.3.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:1fd43c3be4c8e5fd6e4f2baeae35ae18176cf2e5cced681cca908addf1cdd53b", size = 1333650 },
{ url = "https://files.pythonhosted.org/packages/43/d7/afdc95580ca56f30fbcd3060250f66cedbde69b4547028863abd8aa3b47e/contourpy-1.3.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:6afc576f7b33cf00996e5c1102dc2a8f7cc89e39c0b55df93a0b78c1bd992b36", size = 1404833 },
{ url = "https://files.pythonhosted.org/packages/e2/e2/366af18a6d386f41132a48f033cbd2102e9b0cf6345d35ff0826cd984566/contourpy-1.3.3-cp314-cp314-win32.whl", hash = "sha256:66c8a43a4f7b8df8b71ee1840e4211a3c8d93b214b213f590e18a1beca458f7d", size = 189692 },
{ url = "https://files.pythonhosted.org/packages/7d/c2/57f54b03d0f22d4044b8afb9ca0e184f8b1afd57b4f735c2fa70883dc601/contourpy-1.3.3-cp314-cp314-win_amd64.whl", hash = "sha256:cf9022ef053f2694e31d630feaacb21ea24224be1c3ad0520b13d844274614fd", size = 232424 },
{ url = "https://files.pythonhosted.org/packages/18/79/a9416650df9b525737ab521aa181ccc42d56016d2123ddcb7b58e926a42c/contourpy-1.3.3-cp314-cp314-win_arm64.whl", hash = "sha256:95b181891b4c71de4bb404c6621e7e2390745f887f2a026b2d99e92c17892339", size = 198300 },
{ url = "https://files.pythonhosted.org/packages/1f/42/38c159a7d0f2b7b9c04c64ab317042bb6952b713ba875c1681529a2932fe/contourpy-1.3.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:33c82d0138c0a062380332c861387650c82e4cf1747aaa6938b9b6516762e772", size = 306769 },
{ url = "https://files.pythonhosted.org/packages/c3/6c/26a8205f24bca10974e77460de68d3d7c63e282e23782f1239f226fcae6f/contourpy-1.3.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:ea37e7b45949df430fe649e5de8351c423430046a2af20b1c1961cae3afcda77", size = 287892 },
{ url = "https://files.pythonhosted.org/packages/66/06/8a475c8ab718ebfd7925661747dbb3c3ee9c82ac834ccb3570be49d129f4/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d304906ecc71672e9c89e87c4675dc5c2645e1f4269a5063b99b0bb29f232d13", size = 326748 },
{ url = "https://files.pythonhosted.org/packages/b4/a3/c5ca9f010a44c223f098fccd8b158bb1cb287378a31ac141f04730dc49be/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ca658cd1a680a5c9ea96dc61cdbae1e85c8f25849843aa799dfd3cb370ad4fbe", size = 375554 },
{ url = "https://files.pythonhosted.org/packages/80/5b/68bd33ae63fac658a4145088c1e894405e07584a316738710b636c6d0333/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:ab2fd90904c503739a75b7c8c5c01160130ba67944a7b77bbf36ef8054576e7f", size = 388118 },
{ url = "https://files.pythonhosted.org/packages/40/52/4c285a6435940ae25d7410a6c36bda5145839bc3f0beb20c707cda18b9d2/contourpy-1.3.3-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b7301b89040075c30e5768810bc96a8e8d78085b47d8be6e4c3f5a0b4ed478a0", size = 352555 },
{ url = "https://files.pythonhosted.org/packages/24/ee/3e81e1dd174f5c7fefe50e85d0892de05ca4e26ef1c9a59c2a57e43b865a/contourpy-1.3.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:2a2a8b627d5cc6b7c41a4beff6c5ad5eb848c88255fda4a8745f7e901b32d8e4", size = 1322295 },
{ url = "https://files.pythonhosted.org/packages/3c/b2/6d913d4d04e14379de429057cd169e5e00f6c2af3bb13e1710bcbdb5da12/contourpy-1.3.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:fd6ec6be509c787f1caf6b247f0b1ca598bef13f4ddeaa126b7658215529ba0f", size = 1391027 },
{ url = "https://files.pythonhosted.org/packages/93/8a/68a4ec5c55a2971213d29a9374913f7e9f18581945a7a31d1a39b5d2dfe5/contourpy-1.3.3-cp314-cp314t-win32.whl", hash = "sha256:e74a9a0f5e3fff48fb5a7f2fd2b9b70a3fe014a67522f79b7cca4c0c7e43c9ae", size = 202428 },
{ url = "https://files.pythonhosted.org/packages/fa/96/fd9f641ffedc4fa3ace923af73b9d07e869496c9cc7a459103e6e978992f/contourpy-1.3.3-cp314-cp314t-win_amd64.whl", hash = "sha256:13b68d6a62db8eafaebb8039218921399baf6e47bf85006fd8529f2a08ef33fc", size = 250331 },
{ url = "https://files.pythonhosted.org/packages/ae/8c/469afb6465b853afff216f9528ffda78a915ff880ed58813ba4faf4ba0b6/contourpy-1.3.3-cp314-cp314t-win_arm64.whl", hash = "sha256:b7448cb5a725bb1e35ce88771b86fba35ef418952474492cf7c764059933ff8b", size = 203831 },
{ url = "https://files.pythonhosted.org/packages/a5/29/8dcfe16f0107943fa92388c23f6e05cff0ba58058c4c95b00280d4c75a14/contourpy-1.3.3-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cd5dfcaeb10f7b7f9dc8941717c6c2ade08f587be2226222c12b25f0483ed497", size = 278809 },
{ url = "https://files.pythonhosted.org/packages/85/a9/8b37ef4f7dafeb335daee3c8254645ef5725be4d9c6aa70b50ec46ef2f7e/contourpy-1.3.3-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:0c1fc238306b35f246d61a1d416a627348b5cf0648648a031e14bb8705fcdfe8", size = 261593 },
{ url = "https://files.pythonhosted.org/packages/0a/59/ebfb8c677c75605cc27f7122c90313fd2f375ff3c8d19a1694bda74aaa63/contourpy-1.3.3-pp311-pypy311_pp73-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:70f9aad7de812d6541d29d2bbf8feb22ff7e1c299523db288004e3157ff4674e", size = 302202 },
{ url = "https://files.pythonhosted.org/packages/3c/37/21972a15834d90bfbfb009b9d004779bd5a07a0ec0234e5ba8f64d5736f4/contourpy-1.3.3-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:5ed3657edf08512fc3fe81b510e35c2012fbd3081d2e26160f27ca28affec989", size = 329207 },
{ url = "https://files.pythonhosted.org/packages/0c/58/bd257695f39d05594ca4ad60df5bcb7e32247f9951fd09a9b8edb82d1daa/contourpy-1.3.3-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:3d1a3799d62d45c18bafd41c5fa05120b96a28079f2393af559b843d1a966a77", size = 225315 },
]
[[package]]
name = "cycler"
version = "0.12.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/a9/95/a3dbbb5028f35eafb79008e7522a75244477d2838f38cbb722248dabc2a8/cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c", size = 7615 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30", size = 8321 },
]
[[package]] [[package]]
name = "filelock" name = "filelock"
version = "3.20.0" version = "3.20.0"
@ -154,6 +245,55 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/e1/60/e941089faf4f50f2e0231d7f7af69308616a37e99da3ec75df60b8809db7/Flask_Cors-4.0.2-py2.py3-none-any.whl", hash = "sha256:38364faf1a7a5d0a55bd1d2e2f83ee9e359039182f5e6a029557e1f56d92c09a", size = 14467 }, { url = "https://files.pythonhosted.org/packages/e1/60/e941089faf4f50f2e0231d7f7af69308616a37e99da3ec75df60b8809db7/Flask_Cors-4.0.2-py2.py3-none-any.whl", hash = "sha256:38364faf1a7a5d0a55bd1d2e2f83ee9e359039182f5e6a029557e1f56d92c09a", size = 14467 },
] ]
[[package]]
name = "fonttools"
version = "4.60.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/4b/42/97a13e47a1e51a5a7142475bbcf5107fe3a68fc34aef331c897d5fb98ad0/fonttools-4.60.1.tar.gz", hash = "sha256:ef00af0439ebfee806b25f24c8f92109157ff3fac5731dc7867957812e87b8d9", size = 3559823 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/ea/85/639aa9bface1537e0fb0f643690672dde0695a5bbbc90736bc571b0b1941/fonttools-4.60.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7b4c32e232a71f63a5d00259ca3d88345ce2a43295bb049d21061f338124246f", size = 2831872 },
{ url = "https://files.pythonhosted.org/packages/6b/47/3c63158459c95093be9618794acb1067b3f4d30dcc5c3e8114b70e67a092/fonttools-4.60.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3630e86c484263eaac71d117085d509cbcf7b18f677906824e4bace598fb70d2", size = 2356990 },
{ url = "https://files.pythonhosted.org/packages/94/dd/1934b537c86fcf99f9761823f1fc37a98fbd54568e8e613f29a90fed95a9/fonttools-4.60.1-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5c1015318e4fec75dd4943ad5f6a206d9727adf97410d58b7e32ab644a807914", size = 5042189 },
{ url = "https://files.pythonhosted.org/packages/d2/d2/9f4e4c4374dd1daa8367784e1bd910f18ba886db1d6b825b12edf6db3edc/fonttools-4.60.1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e6c58beb17380f7c2ea181ea11e7db8c0ceb474c9dd45f48e71e2cb577d146a1", size = 4978683 },
{ url = "https://files.pythonhosted.org/packages/cc/c4/0fb2dfd1ecbe9a07954cc13414713ed1eab17b1c0214ef07fc93df234a47/fonttools-4.60.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:ec3681a0cb34c255d76dd9d865a55f260164adb9fa02628415cdc2d43ee2c05d", size = 5021372 },
{ url = "https://files.pythonhosted.org/packages/0c/d5/495fc7ae2fab20223cc87179a8f50f40f9a6f821f271ba8301ae12bb580f/fonttools-4.60.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f4b5c37a5f40e4d733d3bbaaef082149bee5a5ea3156a785ff64d949bd1353fa", size = 5132562 },
{ url = "https://files.pythonhosted.org/packages/bc/fa/021dab618526323c744e0206b3f5c8596a2e7ae9aa38db5948a131123e83/fonttools-4.60.1-cp311-cp311-win32.whl", hash = "sha256:398447f3d8c0c786cbf1209711e79080a40761eb44b27cdafffb48f52bcec258", size = 2230288 },
{ url = "https://files.pythonhosted.org/packages/bb/78/0e1a6d22b427579ea5c8273e1c07def2f325b977faaf60bb7ddc01456cb1/fonttools-4.60.1-cp311-cp311-win_amd64.whl", hash = "sha256:d066ea419f719ed87bc2c99a4a4bfd77c2e5949cb724588b9dd58f3fd90b92bf", size = 2278184 },
{ url = "https://files.pythonhosted.org/packages/e3/f7/a10b101b7a6f8836a5adb47f2791f2075d044a6ca123f35985c42edc82d8/fonttools-4.60.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:7b0c6d57ab00dae9529f3faf187f2254ea0aa1e04215cf2f1a8ec277c96661bc", size = 2832953 },
{ url = "https://files.pythonhosted.org/packages/ed/fe/7bd094b59c926acf2304d2151354ddbeb74b94812f3dc943c231db09cb41/fonttools-4.60.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:839565cbf14645952d933853e8ade66a463684ed6ed6c9345d0faf1f0e868877", size = 2352706 },
{ url = "https://files.pythonhosted.org/packages/c0/ca/4bb48a26ed95a1e7eba175535fe5805887682140ee0a0d10a88e1de84208/fonttools-4.60.1-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:8177ec9676ea6e1793c8a084a90b65a9f778771998eb919d05db6d4b1c0b114c", size = 4923716 },
{ url = "https://files.pythonhosted.org/packages/b8/9f/2cb82999f686c1d1ddf06f6ae1a9117a880adbec113611cc9d22b2fdd465/fonttools-4.60.1-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:996a4d1834524adbb423385d5a629b868ef9d774670856c63c9a0408a3063401", size = 4968175 },
{ url = "https://files.pythonhosted.org/packages/18/79/be569699e37d166b78e6218f2cde8c550204f2505038cdd83b42edc469b9/fonttools-4.60.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a46b2f450bc79e06ef3b6394f0c68660529ed51692606ad7f953fc2e448bc903", size = 4911031 },
{ url = "https://files.pythonhosted.org/packages/cc/9f/89411cc116effaec5260ad519162f64f9c150e5522a27cbb05eb62d0c05b/fonttools-4.60.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:6ec722ee589e89a89f5b7574f5c45604030aa6ae24cb2c751e2707193b466fed", size = 5062966 },
{ url = "https://files.pythonhosted.org/packages/62/a1/f888221934b5731d46cb9991c7a71f30cb1f97c0ef5fcf37f8da8fce6c8e/fonttools-4.60.1-cp312-cp312-win32.whl", hash = "sha256:b2cf105cee600d2de04ca3cfa1f74f1127f8455b71dbad02b9da6ec266e116d6", size = 2218750 },
{ url = "https://files.pythonhosted.org/packages/88/8f/a55b5550cd33cd1028601df41acd057d4be20efa5c958f417b0c0613924d/fonttools-4.60.1-cp312-cp312-win_amd64.whl", hash = "sha256:992775c9fbe2cf794786fa0ffca7f09f564ba3499b8fe9f2f80bd7197db60383", size = 2267026 },
{ url = "https://files.pythonhosted.org/packages/7c/5b/cdd2c612277b7ac7ec8c0c9bc41812c43dc7b2d5f2b0897e15fdf5a1f915/fonttools-4.60.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:6f68576bb4bbf6060c7ab047b1574a1ebe5c50a17de62830079967b211059ebb", size = 2825777 },
{ url = "https://files.pythonhosted.org/packages/d6/8a/de9cc0540f542963ba5e8f3a1f6ad48fa211badc3177783b9d5cadf79b5d/fonttools-4.60.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:eedacb5c5d22b7097482fa834bda0dafa3d914a4e829ec83cdea2a01f8c813c4", size = 2348080 },
{ url = "https://files.pythonhosted.org/packages/2d/8b/371ab3cec97ee3fe1126b3406b7abd60c8fec8975fd79a3c75cdea0c3d83/fonttools-4.60.1-cp313-cp313-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:b33a7884fabd72bdf5f910d0cf46be50dce86a0362a65cfc746a4168c67eb96c", size = 4903082 },
{ url = "https://files.pythonhosted.org/packages/04/05/06b1455e4bc653fcb2117ac3ef5fa3a8a14919b93c60742d04440605d058/fonttools-4.60.1-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:2409d5fb7b55fd70f715e6d34e7a6e4f7511b8ad29a49d6df225ee76da76dd77", size = 4960125 },
{ url = "https://files.pythonhosted.org/packages/8e/37/f3b840fcb2666f6cb97038793606bdd83488dca2d0b0fc542ccc20afa668/fonttools-4.60.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c8651e0d4b3bdeda6602b85fdc2abbefc1b41e573ecb37b6779c4ca50753a199", size = 4901454 },
{ url = "https://files.pythonhosted.org/packages/fd/9e/eb76f77e82f8d4a46420aadff12cec6237751b0fb9ef1de373186dcffb5f/fonttools-4.60.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:145daa14bf24824b677b9357c5e44fd8895c2a8f53596e1b9ea3496081dc692c", size = 5044495 },
{ url = "https://files.pythonhosted.org/packages/f8/b3/cede8f8235d42ff7ae891bae8d619d02c8ac9fd0cfc450c5927a6200c70d/fonttools-4.60.1-cp313-cp313-win32.whl", hash = "sha256:2299df884c11162617a66b7c316957d74a18e3758c0274762d2cc87df7bc0272", size = 2217028 },
{ url = "https://files.pythonhosted.org/packages/75/4d/b022c1577807ce8b31ffe055306ec13a866f2337ecee96e75b24b9b753ea/fonttools-4.60.1-cp313-cp313-win_amd64.whl", hash = "sha256:a3db56f153bd4c5c2b619ab02c5db5192e222150ce5a1bc10f16164714bc39ac", size = 2266200 },
{ url = "https://files.pythonhosted.org/packages/9a/83/752ca11c1aa9a899b793a130f2e466b79ea0cf7279c8d79c178fc954a07b/fonttools-4.60.1-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:a884aef09d45ba1206712c7dbda5829562d3fea7726935d3289d343232ecb0d3", size = 2822830 },
{ url = "https://files.pythonhosted.org/packages/57/17/bbeab391100331950a96ce55cfbbff27d781c1b85ebafb4167eae50d9fe3/fonttools-4.60.1-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:8a44788d9d91df72d1a5eac49b31aeb887a5f4aab761b4cffc4196c74907ea85", size = 2345524 },
{ url = "https://files.pythonhosted.org/packages/3d/2e/d4831caa96d85a84dd0da1d9f90d81cec081f551e0ea216df684092c6c97/fonttools-4.60.1-cp314-cp314-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:e852d9dda9f93ad3651ae1e3bb770eac544ec93c3807888798eccddf84596537", size = 4843490 },
{ url = "https://files.pythonhosted.org/packages/49/13/5e2ea7c7a101b6fc3941be65307ef8df92cbbfa6ec4804032baf1893b434/fonttools-4.60.1-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:154cb6ee417e417bf5f7c42fe25858c9140c26f647c7347c06f0cc2d47eff003", size = 4944184 },
{ url = "https://files.pythonhosted.org/packages/0c/2b/cf9603551c525b73fc47c52ee0b82a891579a93d9651ed694e4e2cd08bb8/fonttools-4.60.1-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:5664fd1a9ea7f244487ac8f10340c4e37664675e8667d6fee420766e0fb3cf08", size = 4890218 },
{ url = "https://files.pythonhosted.org/packages/fd/2f/933d2352422e25f2376aae74f79eaa882a50fb3bfef3c0d4f50501267101/fonttools-4.60.1-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:583b7f8e3c49486e4d489ad1deacfb8d5be54a8ef34d6df824f6a171f8511d99", size = 4999324 },
{ url = "https://files.pythonhosted.org/packages/38/99/234594c0391221f66216bc2c886923513b3399a148defaccf81dc3be6560/fonttools-4.60.1-cp314-cp314-win32.whl", hash = "sha256:66929e2ea2810c6533a5184f938502cfdaea4bc3efb7130d8cc02e1c1b4108d6", size = 2220861 },
{ url = "https://files.pythonhosted.org/packages/3e/1d/edb5b23726dde50fc4068e1493e4fc7658eeefcaf75d4c5ffce067d07ae5/fonttools-4.60.1-cp314-cp314-win_amd64.whl", hash = "sha256:f3d5be054c461d6a2268831f04091dc82753176f6ea06dc6047a5e168265a987", size = 2270934 },
{ url = "https://files.pythonhosted.org/packages/fb/da/1392aaa2170adc7071fe7f9cfd181a5684a7afcde605aebddf1fb4d76df5/fonttools-4.60.1-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:b6379e7546ba4ae4b18f8ae2b9bc5960936007a1c0e30b342f662577e8bc3299", size = 2894340 },
{ url = "https://files.pythonhosted.org/packages/bf/a7/3b9f16e010d536ce567058b931a20b590d8f3177b2eda09edd92e392375d/fonttools-4.60.1-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:9d0ced62b59e0430b3690dbc5373df1c2aa7585e9a8ce38eff87f0fd993c5b01", size = 2375073 },
{ url = "https://files.pythonhosted.org/packages/9b/b5/e9bcf51980f98e59bb5bb7c382a63c6f6cac0eec5f67de6d8f2322382065/fonttools-4.60.1-cp314-cp314t-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:875cb7764708b3132637f6c5fb385b16eeba0f7ac9fa45a69d35e09b47045801", size = 4849758 },
{ url = "https://files.pythonhosted.org/packages/e3/dc/1d2cf7d1cba82264b2f8385db3f5960e3d8ce756b4dc65b700d2c496f7e9/fonttools-4.60.1-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:a184b2ea57b13680ab6d5fbde99ccef152c95c06746cb7718c583abd8f945ccc", size = 5085598 },
{ url = "https://files.pythonhosted.org/packages/5d/4d/279e28ba87fb20e0c69baf72b60bbf1c4d873af1476806a7b5f2b7fac1ff/fonttools-4.60.1-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:026290e4ec76583881763fac284aca67365e0be9f13a7fb137257096114cb3bc", size = 4957603 },
{ url = "https://files.pythonhosted.org/packages/78/d4/ff19976305e0c05aa3340c805475abb00224c954d3c65e82c0a69633d55d/fonttools-4.60.1-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:f0e8817c7d1a0c2eedebf57ef9a9896f3ea23324769a9a2061a80fe8852705ed", size = 4974184 },
{ url = "https://files.pythonhosted.org/packages/63/22/8553ff6166f5cd21cfaa115aaacaa0dc73b91c079a8cfd54a482cbc0f4f5/fonttools-4.60.1-cp314-cp314t-win32.whl", hash = "sha256:1410155d0e764a4615774e5c2c6fc516259fe3eca5882f034eb9bfdbee056259", size = 2282241 },
{ url = "https://files.pythonhosted.org/packages/8a/cb/fa7b4d148e11d5a72761a22e595344133e83a9507a4c231df972e657579b/fonttools-4.60.1-cp314-cp314t-win_amd64.whl", hash = "sha256:022beaea4b73a70295b688f817ddc24ed3e3418b5036ffcd5658141184ef0d0c", size = 2345760 },
{ url = "https://files.pythonhosted.org/packages/c7/93/0dd45cd283c32dea1545151d8c3637b4b8c53cdb3a625aeb2885b184d74d/fonttools-4.60.1-py3-none-any.whl", hash = "sha256:906306ac7afe2156fcf0042173d6ebbb05416af70f6b370967b47f8f00103bbb", size = 1143175 },
]
[[package]] [[package]]
name = "fsspec" name = "fsspec"
version = "2025.10.0" version = "2025.10.0"
@ -163,6 +303,18 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl", hash = "sha256:7c7712353ae7d875407f97715f0e1ffcc21e33d5b24556cb1e090ae9409ec61d", size = 200966 }, { url = "https://files.pythonhosted.org/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl", hash = "sha256:7c7712353ae7d875407f97715f0e1ffcc21e33d5b24556cb1e090ae9409ec61d", size = 200966 },
] ]
[[package]]
name = "gunicorn"
version = "22.0.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "packaging" },
]
sdist = { url = "https://files.pythonhosted.org/packages/1e/88/e2f93c5738a4c1f56a458fc7a5b1676fc31dcdbb182bef6b40a141c17d66/gunicorn-22.0.0.tar.gz", hash = "sha256:4a0b436239ff76fb33f11c07a16482c521a7e09c1ce3cc293c2330afe01bec63", size = 3639760 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/29/97/6d610ae77b5633d24b69c2ff1ac3044e0e565ecbd1ec188f02c45073054c/gunicorn-22.0.0-py3-none-any.whl", hash = "sha256:350679f91b24062c86e386e198a15438d53a7a8207235a78ba1b53df4c4378d9", size = 84443 },
]
[[package]] [[package]]
name = "hf-xet" name = "hf-xet"
version = "1.2.0" version = "1.2.0"
@ -220,6 +372,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/0e/61/66938bbb5fc52dbdf84594873d5b51fb1f7c7794e9c0f5bd885f30bc507b/idna-3.11-py3-none-any.whl", hash = "sha256:771a87f49d9defaf64091e6e6fe9c18d4833f140bd19464795bc32d966ca37ea", size = 71008 }, { url = "https://files.pythonhosted.org/packages/0e/61/66938bbb5fc52dbdf84594873d5b51fb1f7c7794e9c0f5bd885f30bc507b/idna-3.11-py3-none-any.whl", hash = "sha256:771a87f49d9defaf64091e6e6fe9c18d4833f140bd19464795bc32d966ca37ea", size = 71008 },
] ]
[[package]]
name = "iniconfig"
version = "2.3.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/72/34/14ca021ce8e5dfedc35312d08ba8bf51fdd999c576889fc2c24cb97f4f10/iniconfig-2.3.0.tar.gz", hash = "sha256:c76315c77db068650d49c5b56314774a7804df16fee4402c1f19d6d15d8c4730", size = 20503 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/cb/b1/3846dd7f199d53cb17f49cba7e651e9ce294d8497c8c150530ed11865bb8/iniconfig-2.3.0-py3-none-any.whl", hash = "sha256:f631c04d2c48c52b84d0d0549c99ff3859c98df65b3101406327ecc7d53fbf12", size = 7484 },
]
[[package]] [[package]]
name = "itsdangerous" name = "itsdangerous"
version = "2.2.0" version = "2.2.0"
@ -250,6 +411,96 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/1e/e8/685f47e0d754320684db4425a0967f7d3fa70126bffd76110b7009a0090f/joblib-1.5.2-py3-none-any.whl", hash = "sha256:4e1f0bdbb987e6d843c70cf43714cb276623def372df3c22fe5266b2670bc241", size = 308396 }, { url = "https://files.pythonhosted.org/packages/1e/e8/685f47e0d754320684db4425a0967f7d3fa70126bffd76110b7009a0090f/joblib-1.5.2-py3-none-any.whl", hash = "sha256:4e1f0bdbb987e6d843c70cf43714cb276623def372df3c22fe5266b2670bc241", size = 308396 },
] ]
[[package]]
name = "kiwisolver"
version = "1.4.9"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/5c/3c/85844f1b0feb11ee581ac23fe5fce65cd049a200c1446708cc1b7f922875/kiwisolver-1.4.9.tar.gz", hash = "sha256:c3b22c26c6fd6811b0ae8363b95ca8ce4ea3c202d3d0975b2914310ceb1bcc4d", size = 97564 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/6f/ab/c80b0d5a9d8a1a65f4f815f2afff9798b12c3b9f31f1d304dd233dd920e2/kiwisolver-1.4.9-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:eb14a5da6dc7642b0f3a18f13654847cd8b7a2550e2645a5bda677862b03ba16", size = 124167 },
{ url = "https://files.pythonhosted.org/packages/a0/c0/27fe1a68a39cf62472a300e2879ffc13c0538546c359b86f149cc19f6ac3/kiwisolver-1.4.9-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:39a219e1c81ae3b103643d2aedb90f1ef22650deb266ff12a19e7773f3e5f089", size = 66579 },
{ url = "https://files.pythonhosted.org/packages/31/a2/a12a503ac1fd4943c50f9822678e8015a790a13b5490354c68afb8489814/kiwisolver-1.4.9-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2405a7d98604b87f3fc28b1716783534b1b4b8510d8142adca34ee0bc3c87543", size = 65309 },
{ url = "https://files.pythonhosted.org/packages/66/e1/e533435c0be77c3f64040d68d7a657771194a63c279f55573188161e81ca/kiwisolver-1.4.9-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:dc1ae486f9abcef254b5618dfb4113dd49f94c68e3e027d03cf0143f3f772b61", size = 1435596 },
{ url = "https://files.pythonhosted.org/packages/67/1e/51b73c7347f9aabdc7215aa79e8b15299097dc2f8e67dee2b095faca9cb0/kiwisolver-1.4.9-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8a1f570ce4d62d718dce3f179ee78dac3b545ac16c0c04bb363b7607a949c0d1", size = 1246548 },
{ url = "https://files.pythonhosted.org/packages/21/aa/72a1c5d1e430294f2d32adb9542719cfb441b5da368d09d268c7757af46c/kiwisolver-1.4.9-cp311-cp311-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:cb27e7b78d716c591e88e0a09a2139c6577865d7f2e152488c2cc6257f460872", size = 1263618 },
{ url = "https://files.pythonhosted.org/packages/a3/af/db1509a9e79dbf4c260ce0cfa3903ea8945f6240e9e59d1e4deb731b1a40/kiwisolver-1.4.9-cp311-cp311-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:15163165efc2f627eb9687ea5f3a28137217d217ac4024893d753f46bce9de26", size = 1317437 },
{ url = "https://files.pythonhosted.org/packages/e0/f2/3ea5ee5d52abacdd12013a94130436e19969fa183faa1e7c7fbc89e9a42f/kiwisolver-1.4.9-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:bdee92c56a71d2b24c33a7d4c2856bd6419d017e08caa7802d2963870e315028", size = 2195742 },
{ url = "https://files.pythonhosted.org/packages/6f/9b/1efdd3013c2d9a2566aa6a337e9923a00590c516add9a1e89a768a3eb2fc/kiwisolver-1.4.9-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:412f287c55a6f54b0650bd9b6dce5aceddb95864a1a90c87af16979d37c89771", size = 2290810 },
{ url = "https://files.pythonhosted.org/packages/fb/e5/cfdc36109ae4e67361f9bc5b41323648cb24a01b9ade18784657e022e65f/kiwisolver-1.4.9-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:2c93f00dcba2eea70af2be5f11a830a742fe6b579a1d4e00f47760ef13be247a", size = 2461579 },
{ url = "https://files.pythonhosted.org/packages/62/86/b589e5e86c7610842213994cdea5add00960076bef4ae290c5fa68589cac/kiwisolver-1.4.9-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f117e1a089d9411663a3207ba874f31be9ac8eaa5b533787024dc07aeb74f464", size = 2268071 },
{ url = "https://files.pythonhosted.org/packages/3b/c6/f8df8509fd1eee6c622febe54384a96cfaf4d43bf2ccec7a0cc17e4715c9/kiwisolver-1.4.9-cp311-cp311-win_amd64.whl", hash = "sha256:be6a04e6c79819c9a8c2373317d19a96048e5a3f90bec587787e86a1153883c2", size = 73840 },
{ url = "https://files.pythonhosted.org/packages/e2/2d/16e0581daafd147bc11ac53f032a2b45eabac897f42a338d0a13c1e5c436/kiwisolver-1.4.9-cp311-cp311-win_arm64.whl", hash = "sha256:0ae37737256ba2de764ddc12aed4956460277f00c4996d51a197e72f62f5eec7", size = 65159 },
{ url = "https://files.pythonhosted.org/packages/86/c9/13573a747838aeb1c76e3267620daa054f4152444d1f3d1a2324b78255b5/kiwisolver-1.4.9-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:ac5a486ac389dddcc5bef4f365b6ae3ffff2c433324fb38dd35e3fab7c957999", size = 123686 },
{ url = "https://files.pythonhosted.org/packages/51/ea/2ecf727927f103ffd1739271ca19c424d0e65ea473fbaeea1c014aea93f6/kiwisolver-1.4.9-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f2ba92255faa7309d06fe44c3a4a97efe1c8d640c2a79a5ef728b685762a6fd2", size = 66460 },
{ url = "https://files.pythonhosted.org/packages/5b/5a/51f5464373ce2aeb5194508298a508b6f21d3867f499556263c64c621914/kiwisolver-1.4.9-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a2899935e724dd1074cb568ce7ac0dce28b2cd6ab539c8e001a8578eb106d14", size = 64952 },
{ url = "https://files.pythonhosted.org/packages/70/90/6d240beb0f24b74371762873e9b7f499f1e02166a2d9c5801f4dbf8fa12e/kiwisolver-1.4.9-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f6008a4919fdbc0b0097089f67a1eb55d950ed7e90ce2cc3e640abadd2757a04", size = 1474756 },
{ url = "https://files.pythonhosted.org/packages/12/42/f36816eaf465220f683fb711efdd1bbf7a7005a2473d0e4ed421389bd26c/kiwisolver-1.4.9-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:67bb8b474b4181770f926f7b7d2f8c0248cbcb78b660fdd41a47054b28d2a752", size = 1276404 },
{ url = "https://files.pythonhosted.org/packages/2e/64/bc2de94800adc830c476dce44e9b40fd0809cddeef1fde9fcf0f73da301f/kiwisolver-1.4.9-cp312-cp312-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:2327a4a30d3ee07d2fbe2e7933e8a37c591663b96ce42a00bc67461a87d7df77", size = 1294410 },
{ url = "https://files.pythonhosted.org/packages/5f/42/2dc82330a70aa8e55b6d395b11018045e58d0bb00834502bf11509f79091/kiwisolver-1.4.9-cp312-cp312-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:7a08b491ec91b1d5053ac177afe5290adacf1f0f6307d771ccac5de30592d198", size = 1343631 },
{ url = "https://files.pythonhosted.org/packages/22/fd/f4c67a6ed1aab149ec5a8a401c323cee7a1cbe364381bb6c9c0d564e0e20/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d8fc5c867c22b828001b6a38d2eaeb88160bf5783c6cb4a5e440efc981ce286d", size = 2224963 },
{ url = "https://files.pythonhosted.org/packages/45/aa/76720bd4cb3713314677d9ec94dcc21ced3f1baf4830adde5bb9b2430a5f/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:3b3115b2581ea35bb6d1f24a4c90af37e5d9b49dcff267eeed14c3893c5b86ab", size = 2321295 },
{ url = "https://files.pythonhosted.org/packages/80/19/d3ec0d9ab711242f56ae0dc2fc5d70e298bb4a1f9dfab44c027668c673a1/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:858e4c22fb075920b96a291928cb7dea5644e94c0ee4fcd5af7e865655e4ccf2", size = 2487987 },
{ url = "https://files.pythonhosted.org/packages/39/e9/61e4813b2c97e86b6fdbd4dd824bf72d28bcd8d4849b8084a357bc0dd64d/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ed0fecd28cc62c54b262e3736f8bb2512d8dcfdc2bcf08be5f47f96bf405b145", size = 2291817 },
{ url = "https://files.pythonhosted.org/packages/a0/41/85d82b0291db7504da3c2defe35c9a8a5c9803a730f297bd823d11d5fb77/kiwisolver-1.4.9-cp312-cp312-win_amd64.whl", hash = "sha256:f68208a520c3d86ea51acf688a3e3002615a7f0238002cccc17affecc86a8a54", size = 73895 },
{ url = "https://files.pythonhosted.org/packages/e2/92/5f3068cf15ee5cb624a0c7596e67e2a0bb2adee33f71c379054a491d07da/kiwisolver-1.4.9-cp312-cp312-win_arm64.whl", hash = "sha256:2c1a4f57df73965f3f14df20b80ee29e6a7930a57d2d9e8491a25f676e197c60", size = 64992 },
{ url = "https://files.pythonhosted.org/packages/31/c1/c2686cda909742ab66c7388e9a1a8521a59eb89f8bcfbee28fc980d07e24/kiwisolver-1.4.9-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a5d0432ccf1c7ab14f9949eec60c5d1f924f17c037e9f8b33352fa05799359b8", size = 123681 },
{ url = "https://files.pythonhosted.org/packages/ca/f0/f44f50c9f5b1a1860261092e3bc91ecdc9acda848a8b8c6abfda4a24dd5c/kiwisolver-1.4.9-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efb3a45b35622bb6c16dbfab491a8f5a391fe0e9d45ef32f4df85658232ca0e2", size = 66464 },
{ url = "https://files.pythonhosted.org/packages/2d/7a/9d90a151f558e29c3936b8a47ac770235f436f2120aca41a6d5f3d62ae8d/kiwisolver-1.4.9-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1a12cf6398e8a0a001a059747a1cbf24705e18fe413bc22de7b3d15c67cffe3f", size = 64961 },
{ url = "https://files.pythonhosted.org/packages/e9/e9/f218a2cb3a9ffbe324ca29a9e399fa2d2866d7f348ec3a88df87fc248fc5/kiwisolver-1.4.9-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b67e6efbf68e077dd71d1a6b37e43e1a99d0bff1a3d51867d45ee8908b931098", size = 1474607 },
{ url = "https://files.pythonhosted.org/packages/d9/28/aac26d4c882f14de59041636292bc838db8961373825df23b8eeb807e198/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5656aa670507437af0207645273ccdfee4f14bacd7f7c67a4306d0dcaeaf6eed", size = 1276546 },
{ url = "https://files.pythonhosted.org/packages/8b/ad/8bfc1c93d4cc565e5069162f610ba2f48ff39b7de4b5b8d93f69f30c4bed/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:bfc08add558155345129c7803b3671cf195e6a56e7a12f3dde7c57d9b417f525", size = 1294482 },
{ url = "https://files.pythonhosted.org/packages/da/f1/6aca55ff798901d8ce403206d00e033191f63d82dd708a186e0ed2067e9c/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:40092754720b174e6ccf9e845d0d8c7d8e12c3d71e7fc35f55f3813e96376f78", size = 1343720 },
{ url = "https://files.pythonhosted.org/packages/d1/91/eed031876c595c81d90d0f6fc681ece250e14bf6998c3d7c419466b523b7/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:497d05f29a1300d14e02e6441cf0f5ee81c1ff5a304b0d9fb77423974684e08b", size = 2224907 },
{ url = "https://files.pythonhosted.org/packages/e9/ec/4d1925f2e49617b9cca9c34bfa11adefad49d00db038e692a559454dfb2e/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:bdd1a81a1860476eb41ac4bc1e07b3f07259e6d55bbf739b79c8aaedcf512799", size = 2321334 },
{ url = "https://files.pythonhosted.org/packages/43/cb/450cd4499356f68802750c6ddc18647b8ea01ffa28f50d20598e0befe6e9/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:e6b93f13371d341afee3be9f7c5964e3fe61d5fa30f6a30eb49856935dfe4fc3", size = 2488313 },
{ url = "https://files.pythonhosted.org/packages/71/67/fc76242bd99f885651128a5d4fa6083e5524694b7c88b489b1b55fdc491d/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:d75aa530ccfaa593da12834b86a0724f58bff12706659baa9227c2ccaa06264c", size = 2291970 },
{ url = "https://files.pythonhosted.org/packages/75/bd/f1a5d894000941739f2ae1b65a32892349423ad49c2e6d0771d0bad3fae4/kiwisolver-1.4.9-cp313-cp313-win_amd64.whl", hash = "sha256:dd0a578400839256df88c16abddf9ba14813ec5f21362e1fe65022e00c883d4d", size = 73894 },
{ url = "https://files.pythonhosted.org/packages/95/38/dce480814d25b99a391abbddadc78f7c117c6da34be68ca8b02d5848b424/kiwisolver-1.4.9-cp313-cp313-win_arm64.whl", hash = "sha256:d4188e73af84ca82468f09cadc5ac4db578109e52acb4518d8154698d3a87ca2", size = 64995 },
{ url = "https://files.pythonhosted.org/packages/e2/37/7d218ce5d92dadc5ebdd9070d903e0c7cf7edfe03f179433ac4d13ce659c/kiwisolver-1.4.9-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:5a0f2724dfd4e3b3ac5a82436a8e6fd16baa7d507117e4279b660fe8ca38a3a1", size = 126510 },
{ url = "https://files.pythonhosted.org/packages/23/b0/e85a2b48233daef4b648fb657ebbb6f8367696a2d9548a00b4ee0eb67803/kiwisolver-1.4.9-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:1b11d6a633e4ed84fc0ddafd4ebfd8ea49b3f25082c04ad12b8315c11d504dc1", size = 67903 },
{ url = "https://files.pythonhosted.org/packages/44/98/f2425bc0113ad7de24da6bb4dae1343476e95e1d738be7c04d31a5d037fd/kiwisolver-1.4.9-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:61874cdb0a36016354853593cffc38e56fc9ca5aa97d2c05d3dcf6922cd55a11", size = 66402 },
{ url = "https://files.pythonhosted.org/packages/98/d8/594657886df9f34c4177cc353cc28ca7e6e5eb562d37ccc233bff43bbe2a/kiwisolver-1.4.9-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:60c439763a969a6af93b4881db0eed8fadf93ee98e18cbc35bc8da868d0c4f0c", size = 1582135 },
{ url = "https://files.pythonhosted.org/packages/5c/c6/38a115b7170f8b306fc929e166340c24958347308ea3012c2b44e7e295db/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:92a2f997387a1b79a75e7803aa7ded2cfbe2823852ccf1ba3bcf613b62ae3197", size = 1389409 },
{ url = "https://files.pythonhosted.org/packages/bf/3b/e04883dace81f24a568bcee6eb3001da4ba05114afa622ec9b6fafdc1f5e/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:a31d512c812daea6d8b3be3b2bfcbeb091dbb09177706569bcfc6240dcf8b41c", size = 1401763 },
{ url = "https://files.pythonhosted.org/packages/9f/80/20ace48e33408947af49d7d15c341eaee69e4e0304aab4b7660e234d6288/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:52a15b0f35dad39862d376df10c5230155243a2c1a436e39eb55623ccbd68185", size = 1453643 },
{ url = "https://files.pythonhosted.org/packages/64/31/6ce4380a4cd1f515bdda976a1e90e547ccd47b67a1546d63884463c92ca9/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:a30fd6fdef1430fd9e1ba7b3398b5ee4e2887783917a687d86ba69985fb08748", size = 2330818 },
{ url = "https://files.pythonhosted.org/packages/fa/e9/3f3fcba3bcc7432c795b82646306e822f3fd74df0ee81f0fa067a1f95668/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:cc9617b46837c6468197b5945e196ee9ca43057bb7d9d1ae688101e4e1dddf64", size = 2419963 },
{ url = "https://files.pythonhosted.org/packages/99/43/7320c50e4133575c66e9f7dadead35ab22d7c012a3b09bb35647792b2a6d/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:0ab74e19f6a2b027ea4f845a78827969af45ce790e6cb3e1ebab71bdf9f215ff", size = 2594639 },
{ url = "https://files.pythonhosted.org/packages/65/d6/17ae4a270d4a987ef8a385b906d2bdfc9fce502d6dc0d3aea865b47f548c/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:dba5ee5d3981160c28d5490f0d1b7ed730c22470ff7f6cc26cfcfaacb9896a07", size = 2391741 },
{ url = "https://files.pythonhosted.org/packages/2a/8f/8f6f491d595a9e5912971f3f863d81baddccc8a4d0c3749d6a0dd9ffc9df/kiwisolver-1.4.9-cp313-cp313t-win_arm64.whl", hash = "sha256:0749fd8f4218ad2e851e11cc4dc05c7cbc0cbc4267bdfdb31782e65aace4ee9c", size = 68646 },
{ url = "https://files.pythonhosted.org/packages/6b/32/6cc0fbc9c54d06c2969faa9c1d29f5751a2e51809dd55c69055e62d9b426/kiwisolver-1.4.9-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:9928fe1eb816d11ae170885a74d074f57af3a0d65777ca47e9aeb854a1fba386", size = 123806 },
{ url = "https://files.pythonhosted.org/packages/b2/dd/2bfb1d4a4823d92e8cbb420fe024b8d2167f72079b3bb941207c42570bdf/kiwisolver-1.4.9-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:d0005b053977e7b43388ddec89fa567f43d4f6d5c2c0affe57de5ebf290dc552", size = 66605 },
{ url = "https://files.pythonhosted.org/packages/f7/69/00aafdb4e4509c2ca6064646cba9cd4b37933898f426756adb2cb92ebbed/kiwisolver-1.4.9-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:2635d352d67458b66fd0667c14cb1d4145e9560d503219034a18a87e971ce4f3", size = 64925 },
{ url = "https://files.pythonhosted.org/packages/43/dc/51acc6791aa14e5cb6d8a2e28cefb0dc2886d8862795449d021334c0df20/kiwisolver-1.4.9-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:767c23ad1c58c9e827b649a9ab7809fd5fd9db266a9cf02b0e926ddc2c680d58", size = 1472414 },
{ url = "https://files.pythonhosted.org/packages/3d/bb/93fa64a81db304ac8a246f834d5094fae4b13baf53c839d6bb6e81177129/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:72d0eb9fba308b8311685c2268cf7d0a0639a6cd027d8128659f72bdd8a024b4", size = 1281272 },
{ url = "https://files.pythonhosted.org/packages/70/e6/6df102916960fb8d05069d4bd92d6d9a8202d5a3e2444494e7cd50f65b7a/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:f68e4f3eeca8fb22cc3d731f9715a13b652795ef657a13df1ad0c7dc0e9731df", size = 1298578 },
{ url = "https://files.pythonhosted.org/packages/7c/47/e142aaa612f5343736b087864dbaebc53ea8831453fb47e7521fa8658f30/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:d84cd4061ae292d8ac367b2c3fa3aad11cb8625a95d135fe93f286f914f3f5a6", size = 1345607 },
{ url = "https://files.pythonhosted.org/packages/54/89/d641a746194a0f4d1a3670fb900d0dbaa786fb98341056814bc3f058fa52/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:a60ea74330b91bd22a29638940d115df9dc00af5035a9a2a6ad9399ffb4ceca5", size = 2230150 },
{ url = "https://files.pythonhosted.org/packages/aa/6b/5ee1207198febdf16ac11f78c5ae40861b809cbe0e6d2a8d5b0b3044b199/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:ce6a3a4e106cf35c2d9c4fa17c05ce0b180db622736845d4315519397a77beaf", size = 2325979 },
{ url = "https://files.pythonhosted.org/packages/fc/ff/b269eefd90f4ae14dcc74973d5a0f6d28d3b9bb1afd8c0340513afe6b39a/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:77937e5e2a38a7b48eef0585114fe7930346993a88060d0bf886086d2aa49ef5", size = 2491456 },
{ url = "https://files.pythonhosted.org/packages/fc/d4/10303190bd4d30de547534601e259a4fbf014eed94aae3e5521129215086/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:24c175051354f4a28c5d6a31c93906dc653e2bf234e8a4bbfb964892078898ce", size = 2294621 },
{ url = "https://files.pythonhosted.org/packages/28/e0/a9a90416fce5c0be25742729c2ea52105d62eda6c4be4d803c2a7be1fa50/kiwisolver-1.4.9-cp314-cp314-win_amd64.whl", hash = "sha256:0763515d4df10edf6d06a3c19734e2566368980d21ebec439f33f9eb936c07b7", size = 75417 },
{ url = "https://files.pythonhosted.org/packages/1f/10/6949958215b7a9a264299a7db195564e87900f709db9245e4ebdd3c70779/kiwisolver-1.4.9-cp314-cp314-win_arm64.whl", hash = "sha256:0e4e2bf29574a6a7b7f6cb5fa69293b9f96c928949ac4a53ba3f525dffb87f9c", size = 66582 },
{ url = "https://files.pythonhosted.org/packages/ec/79/60e53067903d3bc5469b369fe0dfc6b3482e2133e85dae9daa9527535991/kiwisolver-1.4.9-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:d976bbb382b202f71c67f77b0ac11244021cfa3f7dfd9e562eefcea2df711548", size = 126514 },
{ url = "https://files.pythonhosted.org/packages/25/d1/4843d3e8d46b072c12a38c97c57fab4608d36e13fe47d47ee96b4d61ba6f/kiwisolver-1.4.9-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:2489e4e5d7ef9a1c300a5e0196e43d9c739f066ef23270607d45aba368b91f2d", size = 67905 },
{ url = "https://files.pythonhosted.org/packages/8c/ae/29ffcbd239aea8b93108de1278271ae764dfc0d803a5693914975f200596/kiwisolver-1.4.9-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:e2ea9f7ab7fbf18fffb1b5434ce7c69a07582f7acc7717720f1d69f3e806f90c", size = 66399 },
{ url = "https://files.pythonhosted.org/packages/a1/ae/d7ba902aa604152c2ceba5d352d7b62106bedbccc8e95c3934d94472bfa3/kiwisolver-1.4.9-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b34e51affded8faee0dfdb705416153819d8ea9250bbbf7ea1b249bdeb5f1122", size = 1582197 },
{ url = "https://files.pythonhosted.org/packages/f2/41/27c70d427eddb8bc7e4f16420a20fefc6f480312122a59a959fdfe0445ad/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d8aacd3d4b33b772542b2e01beb50187536967b514b00003bdda7589722d2a64", size = 1390125 },
{ url = "https://files.pythonhosted.org/packages/41/42/b3799a12bafc76d962ad69083f8b43b12bf4fe78b097b12e105d75c9b8f1/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:7cf974dd4e35fa315563ac99d6287a1024e4dc2077b8a7d7cd3d2fb65d283134", size = 1402612 },
{ url = "https://files.pythonhosted.org/packages/d2/b5/a210ea073ea1cfaca1bb5c55a62307d8252f531beb364e18aa1e0888b5a0/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:85bd218b5ecfbee8c8a82e121802dcb519a86044c9c3b2e4aef02fa05c6da370", size = 1453990 },
{ url = "https://files.pythonhosted.org/packages/5f/ce/a829eb8c033e977d7ea03ed32fb3c1781b4fa0433fbadfff29e39c676f32/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:0856e241c2d3df4efef7c04a1e46b1936b6120c9bcf36dd216e3acd84bc4fb21", size = 2331601 },
{ url = "https://files.pythonhosted.org/packages/e0/4b/b5e97eb142eb9cd0072dacfcdcd31b1c66dc7352b0f7c7255d339c0edf00/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_ppc64le.whl", hash = "sha256:9af39d6551f97d31a4deebeac6f45b156f9755ddc59c07b402c148f5dbb6482a", size = 2422041 },
{ url = "https://files.pythonhosted.org/packages/40/be/8eb4cd53e1b85ba4edc3a9321666f12b83113a178845593307a3e7891f44/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_s390x.whl", hash = "sha256:bb4ae2b57fc1d8cbd1cf7b1d9913803681ffa903e7488012be5b76dedf49297f", size = 2594897 },
{ url = "https://files.pythonhosted.org/packages/99/dd/841e9a66c4715477ea0abc78da039832fbb09dac5c35c58dc4c41a407b8a/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:aedff62918805fb62d43a4aa2ecd4482c380dc76cd31bd7c8878588a61bd0369", size = 2391835 },
{ url = "https://files.pythonhosted.org/packages/0c/28/4b2e5c47a0da96896fdfdb006340ade064afa1e63675d01ea5ac222b6d52/kiwisolver-1.4.9-cp314-cp314t-win_amd64.whl", hash = "sha256:1fa333e8b2ce4d9660f2cda9c0e1b6bafcfb2457a9d259faa82289e73ec24891", size = 79988 },
{ url = "https://files.pythonhosted.org/packages/80/be/3578e8afd18c88cdf9cb4cffde75a96d2be38c5a903f1ed0ceec061bd09e/kiwisolver-1.4.9-cp314-cp314t-win_arm64.whl", hash = "sha256:4a48a2ce79d65d363597ef7b567ce3d14d68783d2b2263d98db3d9477805ba32", size = 70260 },
{ url = "https://files.pythonhosted.org/packages/a3/0f/36d89194b5a32c054ce93e586d4049b6c2c22887b0eb229c61c68afd3078/kiwisolver-1.4.9-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:720e05574713db64c356e86732c0f3c5252818d05f9df320f0ad8380641acea5", size = 60104 },
{ url = "https://files.pythonhosted.org/packages/52/ba/4ed75f59e4658fd21fe7dde1fee0ac397c678ec3befba3fe6482d987af87/kiwisolver-1.4.9-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:17680d737d5335b552994a2008fab4c851bcd7de33094a82067ef3a576ff02fa", size = 58592 },
{ url = "https://files.pythonhosted.org/packages/33/01/a8ea7c5ea32a9b45ceeaee051a04c8ed4320f5add3c51bfa20879b765b70/kiwisolver-1.4.9-pp311-pypy311_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:85b5352f94e490c028926ea567fc569c52ec79ce131dadb968d3853e809518c2", size = 80281 },
{ url = "https://files.pythonhosted.org/packages/da/e3/dbd2ecdce306f1d07a1aaf324817ee993aab7aee9db47ceac757deabafbe/kiwisolver-1.4.9-pp311-pypy311_pp73-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:464415881e4801295659462c49461a24fb107c140de781d55518c4b80cb6790f", size = 78009 },
{ url = "https://files.pythonhosted.org/packages/da/e9/0d4add7873a73e462aeb45c036a2dead2562b825aa46ba326727b3f31016/kiwisolver-1.4.9-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:fb940820c63a9590d31d88b815e7a3aa5915cad3ce735ab45f0c730b39547de1", size = 73929 },
]
[[package]] [[package]]
name = "markupsafe" name = "markupsafe"
version = "3.0.3" version = "3.0.3"
@ -324,6 +575,70 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/70/bc/6f1c2f612465f5fa89b95bead1f44dcb607670fd42891d8fdcd5d039f4f4/markupsafe-3.0.3-cp314-cp314t-win_arm64.whl", hash = "sha256:32001d6a8fc98c8cb5c947787c5d08b0a50663d139f1305bac5885d98d9b40fa", size = 14146 }, { url = "https://files.pythonhosted.org/packages/70/bc/6f1c2f612465f5fa89b95bead1f44dcb607670fd42891d8fdcd5d039f4f4/markupsafe-3.0.3-cp314-cp314t-win_arm64.whl", hash = "sha256:32001d6a8fc98c8cb5c947787c5d08b0a50663d139f1305bac5885d98d9b40fa", size = 14146 },
] ]
[[package]]
name = "matplotlib"
version = "3.10.7"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "contourpy" },
{ name = "cycler" },
{ name = "fonttools" },
{ name = "kiwisolver" },
{ name = "numpy" },
{ name = "packaging" },
{ name = "pillow" },
{ name = "pyparsing" },
{ name = "python-dateutil" },
]
sdist = { url = "https://files.pythonhosted.org/packages/ae/e2/d2d5295be2f44c678ebaf3544ba32d20c1f9ef08c49fe47f496180e1db15/matplotlib-3.10.7.tar.gz", hash = "sha256:a06ba7e2a2ef9131c79c49e63dad355d2d878413a0376c1727c8b9335ff731c7", size = 34804865 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/fc/bc/0fb489005669127ec13f51be0c6adc074d7cf191075dab1da9fe3b7a3cfc/matplotlib-3.10.7-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:53b492410a6cd66c7a471de6c924f6ede976e963c0f3097a3b7abfadddc67d0a", size = 8257507 },
{ url = "https://files.pythonhosted.org/packages/e2/6a/d42588ad895279ff6708924645b5d2ed54a7fb2dc045c8a804e955aeace1/matplotlib-3.10.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d9749313deb729f08207718d29c86246beb2ea3fdba753595b55901dee5d2fd6", size = 8119565 },
{ url = "https://files.pythonhosted.org/packages/10/b7/4aa196155b4d846bd749cf82aa5a4c300cf55a8b5e0dfa5b722a63c0f8a0/matplotlib-3.10.7-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:2222c7ba2cbde7fe63032769f6eb7e83ab3227f47d997a8453377709b7fe3a5a", size = 8692668 },
{ url = "https://files.pythonhosted.org/packages/e6/e7/664d2b97016f46683a02d854d730cfcf54ff92c1dafa424beebef50f831d/matplotlib-3.10.7-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:e91f61a064c92c307c5a9dc8c05dc9f8a68f0a3be199d9a002a0622e13f874a1", size = 9521051 },
{ url = "https://files.pythonhosted.org/packages/a8/a3/37aef1404efa615f49b5758a5e0261c16dd88f389bc1861e722620e4a754/matplotlib-3.10.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:6f1851eab59ca082c95df5a500106bad73672645625e04538b3ad0f69471ffcc", size = 9576878 },
{ url = "https://files.pythonhosted.org/packages/33/cd/b145f9797126f3f809d177ca378de57c45413c5099c5990de2658760594a/matplotlib-3.10.7-cp311-cp311-win_amd64.whl", hash = "sha256:6516ce375109c60ceec579e699524e9d504cd7578506f01150f7a6bc174a775e", size = 8115142 },
{ url = "https://files.pythonhosted.org/packages/2e/39/63bca9d2b78455ed497fcf51a9c71df200a11048f48249038f06447fa947/matplotlib-3.10.7-cp311-cp311-win_arm64.whl", hash = "sha256:b172db79759f5f9bc13ef1c3ef8b9ee7b37b0247f987fbbbdaa15e4f87fd46a9", size = 7992439 },
{ url = "https://files.pythonhosted.org/packages/be/b3/09eb0f7796932826ec20c25b517d568627754f6c6462fca19e12c02f2e12/matplotlib-3.10.7-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7a0edb7209e21840e8361e91ea84ea676658aa93edd5f8762793dec77a4a6748", size = 8272389 },
{ url = "https://files.pythonhosted.org/packages/11/0b/1ae80ddafb8652fd8046cb5c8460ecc8d4afccb89e2c6d6bec61e04e1eaf/matplotlib-3.10.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c380371d3c23e0eadf8ebff114445b9f970aff2010198d498d4ab4c3b41eea4f", size = 8128247 },
{ url = "https://files.pythonhosted.org/packages/7d/18/95ae2e242d4a5c98bd6e90e36e128d71cf1c7e39b0874feaed3ef782e789/matplotlib-3.10.7-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:d5f256d49fea31f40f166a5e3131235a5d2f4b7f44520b1cf0baf1ce568ccff0", size = 8696996 },
{ url = "https://files.pythonhosted.org/packages/7e/3d/5b559efc800bd05cb2033aa85f7e13af51958136a48327f7c261801ff90a/matplotlib-3.10.7-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:11ae579ac83cdf3fb72573bb89f70e0534de05266728740d478f0f818983c695", size = 9530153 },
{ url = "https://files.pythonhosted.org/packages/88/57/eab4a719fd110312d3c220595d63a3c85ec2a39723f0f4e7fa7e6e3f74ba/matplotlib-3.10.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4c14b6acd16cddc3569a2d515cfdd81c7a68ac5639b76548cfc1a9e48b20eb65", size = 9593093 },
{ url = "https://files.pythonhosted.org/packages/31/3c/80816f027b3a4a28cd2a0a6ef7f89a2db22310e945cd886ec25bfb399221/matplotlib-3.10.7-cp312-cp312-win_amd64.whl", hash = "sha256:0d8c32b7ea6fb80b1aeff5a2ceb3fb9778e2759e899d9beff75584714afcc5ee", size = 8122771 },
{ url = "https://files.pythonhosted.org/packages/de/77/ef1fc78bfe99999b2675435cc52120887191c566b25017d78beaabef7f2d/matplotlib-3.10.7-cp312-cp312-win_arm64.whl", hash = "sha256:5f3f6d315dcc176ba7ca6e74c7768fb7e4cf566c49cb143f6bc257b62e634ed8", size = 7992812 },
{ url = "https://files.pythonhosted.org/packages/02/9c/207547916a02c78f6bdd83448d9b21afbc42f6379ed887ecf610984f3b4e/matplotlib-3.10.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1d9d3713a237970569156cfb4de7533b7c4eacdd61789726f444f96a0d28f57f", size = 8273212 },
{ url = "https://files.pythonhosted.org/packages/bc/d0/b3d3338d467d3fc937f0bb7f256711395cae6f78e22cef0656159950adf0/matplotlib-3.10.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:37a1fea41153dd6ee061d21ab69c9cf2cf543160b1b85d89cd3d2e2a7902ca4c", size = 8128713 },
{ url = "https://files.pythonhosted.org/packages/22/ff/6425bf5c20d79aa5b959d1ce9e65f599632345391381c9a104133fe0b171/matplotlib-3.10.7-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b3c4ea4948d93c9c29dc01c0c23eef66f2101bf75158c291b88de6525c55c3d1", size = 8698527 },
{ url = "https://files.pythonhosted.org/packages/d0/7f/ccdca06f4c2e6c7989270ed7829b8679466682f4cfc0f8c9986241c023b6/matplotlib-3.10.7-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:22df30ffaa89f6643206cf13877191c63a50e8f800b038bc39bee9d2d4957632", size = 9529690 },
{ url = "https://files.pythonhosted.org/packages/b8/95/b80fc2c1f269f21ff3d193ca697358e24408c33ce2b106a7438a45407b63/matplotlib-3.10.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b69676845a0a66f9da30e87f48be36734d6748024b525ec4710be40194282c84", size = 9593732 },
{ url = "https://files.pythonhosted.org/packages/e1/b6/23064a96308b9aeceeffa65e96bcde459a2ea4934d311dee20afde7407a0/matplotlib-3.10.7-cp313-cp313-win_amd64.whl", hash = "sha256:744991e0cc863dd669c8dc9136ca4e6e0082be2070b9d793cbd64bec872a6815", size = 8122727 },
{ url = "https://files.pythonhosted.org/packages/b3/a6/2faaf48133b82cf3607759027f82b5c702aa99cdfcefb7f93d6ccf26a424/matplotlib-3.10.7-cp313-cp313-win_arm64.whl", hash = "sha256:fba2974df0bf8ce3c995fa84b79cde38326e0f7b5409e7a3a481c1141340bcf7", size = 7992958 },
{ url = "https://files.pythonhosted.org/packages/4a/f0/b018fed0b599bd48d84c08794cb242227fe3341952da102ee9d9682db574/matplotlib-3.10.7-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:932c55d1fa7af4423422cb6a492a31cbcbdbe68fd1a9a3f545aa5e7a143b5355", size = 8316849 },
{ url = "https://files.pythonhosted.org/packages/b0/b7/bb4f23856197659f275e11a2a164e36e65e9b48ea3e93c4ec25b4f163198/matplotlib-3.10.7-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:5e38c2d581d62ee729a6e144c47a71b3f42fb4187508dbbf4fe71d5612c3433b", size = 8178225 },
{ url = "https://files.pythonhosted.org/packages/62/56/0600609893ff277e6f3ab3c0cef4eafa6e61006c058e84286c467223d4d5/matplotlib-3.10.7-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:786656bb13c237bbcebcd402f65f44dd61ead60ee3deb045af429d889c8dbc67", size = 8711708 },
{ url = "https://files.pythonhosted.org/packages/d8/1a/6bfecb0cafe94d6658f2f1af22c43b76cf7a1c2f0dc34ef84cbb6809617e/matplotlib-3.10.7-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:09d7945a70ea43bf9248f4b6582734c2fe726723204a76eca233f24cffc7ef67", size = 9541409 },
{ url = "https://files.pythonhosted.org/packages/08/50/95122a407d7f2e446fd865e2388a232a23f2b81934960ea802f3171518e4/matplotlib-3.10.7-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:d0b181e9fa8daf1d9f2d4c547527b167cb8838fc587deabca7b5c01f97199e84", size = 9594054 },
{ url = "https://files.pythonhosted.org/packages/13/76/75b194a43b81583478a81e78a07da8d9ca6ddf50dd0a2ccabf258059481d/matplotlib-3.10.7-cp313-cp313t-win_amd64.whl", hash = "sha256:31963603041634ce1a96053047b40961f7a29eb8f9a62e80cc2c0427aa1d22a2", size = 8200100 },
{ url = "https://files.pythonhosted.org/packages/f5/9e/6aefebdc9f8235c12bdeeda44cc0383d89c1e41da2c400caf3ee2073a3ce/matplotlib-3.10.7-cp313-cp313t-win_arm64.whl", hash = "sha256:aebed7b50aa6ac698c90f60f854b47e48cd2252b30510e7a1feddaf5a3f72cbf", size = 8042131 },
{ url = "https://files.pythonhosted.org/packages/0d/4b/e5bc2c321b6a7e3a75638d937d19ea267c34bd5a90e12bee76c4d7c7a0d9/matplotlib-3.10.7-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:d883460c43e8c6b173fef244a2341f7f7c0e9725c7fe68306e8e44ed9c8fb100", size = 8273787 },
{ url = "https://files.pythonhosted.org/packages/86/ad/6efae459c56c2fbc404da154e13e3a6039129f3c942b0152624f1c621f05/matplotlib-3.10.7-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:07124afcf7a6504eafcb8ce94091c5898bbdd351519a1beb5c45f7a38c67e77f", size = 8131348 },
{ url = "https://files.pythonhosted.org/packages/a6/5a/a4284d2958dee4116359cc05d7e19c057e64ece1b4ac986ab0f2f4d52d5a/matplotlib-3.10.7-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c17398b709a6cce3d9fdb1595c33e356d91c098cd9486cb2cc21ea2ea418e715", size = 9533949 },
{ url = "https://files.pythonhosted.org/packages/de/ff/f3781b5057fa3786623ad8976fc9f7b0d02b2f28534751fd5a44240de4cf/matplotlib-3.10.7-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:7146d64f561498764561e9cd0ed64fcf582e570fc519e6f521e2d0cfd43365e1", size = 9804247 },
{ url = "https://files.pythonhosted.org/packages/47/5a/993a59facb8444efb0e197bf55f545ee449902dcee86a4dfc580c3b61314/matplotlib-3.10.7-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:90ad854c0a435da3104c01e2c6f0028d7e719b690998a2333d7218db80950722", size = 9595497 },
{ url = "https://files.pythonhosted.org/packages/0d/a5/77c95aaa9bb32c345cbb49626ad8eb15550cba2e6d4c88081a6c2ac7b08d/matplotlib-3.10.7-cp314-cp314-win_amd64.whl", hash = "sha256:4645fc5d9d20ffa3a39361fcdbcec731382763b623b72627806bf251b6388866", size = 8252732 },
{ url = "https://files.pythonhosted.org/packages/74/04/45d269b4268d222390d7817dae77b159651909669a34ee9fdee336db5883/matplotlib-3.10.7-cp314-cp314-win_arm64.whl", hash = "sha256:9257be2f2a03415f9105c486d304a321168e61ad450f6153d77c69504ad764bb", size = 8124240 },
{ url = "https://files.pythonhosted.org/packages/4b/c7/ca01c607bb827158b439208c153d6f14ddb9fb640768f06f7ca3488ae67b/matplotlib-3.10.7-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:1e4bbad66c177a8fdfa53972e5ef8be72a5f27e6a607cec0d8579abd0f3102b1", size = 8316938 },
{ url = "https://files.pythonhosted.org/packages/84/d2/5539e66e9f56d2fdec94bb8436f5e449683b4e199bcc897c44fbe3c99e28/matplotlib-3.10.7-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:d8eb7194b084b12feb19142262165832fc6ee879b945491d1c3d4660748020c4", size = 8178245 },
{ url = "https://files.pythonhosted.org/packages/77/b5/e6ca22901fd3e4fe433a82e583436dd872f6c966fca7e63cf806b40356f8/matplotlib-3.10.7-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b4d41379b05528091f00e1728004f9a8d7191260f3862178b88e8fd770206318", size = 9541411 },
{ url = "https://files.pythonhosted.org/packages/9e/99/a4524db57cad8fee54b7237239a8f8360bfcfa3170d37c9e71c090c0f409/matplotlib-3.10.7-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4a74f79fafb2e177f240579bc83f0b60f82cc47d2f1d260f422a0627207008ca", size = 9803664 },
{ url = "https://files.pythonhosted.org/packages/e6/a5/85e2edf76ea0ad4288d174926d9454ea85f3ce5390cc4e6fab196cbf250b/matplotlib-3.10.7-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:702590829c30aada1e8cef0568ddbffa77ca747b4d6e36c6d173f66e301f89cc", size = 9594066 },
{ url = "https://files.pythonhosted.org/packages/39/69/9684368a314f6d83fe5c5ad2a4121a3a8e03723d2e5c8ea17b66c1bad0e7/matplotlib-3.10.7-cp314-cp314t-win_amd64.whl", hash = "sha256:f79d5de970fc90cd5591f60053aecfce1fcd736e0303d9f0bf86be649fa68fb8", size = 8342832 },
{ url = "https://files.pythonhosted.org/packages/04/5f/e22e08da14bc1a0894184640d47819d2338b792732e20d292bf86e5ab785/matplotlib-3.10.7-cp314-cp314t-win_arm64.whl", hash = "sha256:cb783436e47fcf82064baca52ce748af71725d0352e1d31564cbe9c95df92b9c", size = 8172585 },
{ url = "https://files.pythonhosted.org/packages/58/8f/76d5dc21ac64a49e5498d7f0472c0781dae442dd266a67458baec38288ec/matplotlib-3.10.7-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:15112bcbaef211bd663fa935ec33313b948e214454d949b723998a43357b17b0", size = 8252283 },
{ url = "https://files.pythonhosted.org/packages/27/0d/9c5d4c2317feb31d819e38c9f947c942f42ebd4eb935fc6fd3518a11eaa7/matplotlib-3.10.7-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:d2a959c640cdeecdd2ec3136e8ea0441da59bcaf58d67e9c590740addba2cb68", size = 8116733 },
{ url = "https://files.pythonhosted.org/packages/9a/cc/3fe688ff1355010937713164caacf9ed443675ac48a997bab6ed23b3f7c0/matplotlib-3.10.7-pp311-pypy311_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:3886e47f64611046bc1db523a09dd0a0a6bed6081e6f90e13806dd1d1d1b5e91", size = 8693919 },
]
[[package]] [[package]]
name = "mpmath" name = "mpmath"
version = "1.3.0" version = "1.3.0"
@ -524,6 +839,60 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl", hash = "sha256:29572ef2b1f17581046b3a2227d5c611fb25ec70ca1ba8554b24b0e69331a484", size = 66469 }, { url = "https://files.pythonhosted.org/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl", hash = "sha256:29572ef2b1f17581046b3a2227d5c611fb25ec70ca1ba8554b24b0e69331a484", size = 66469 },
] ]
[[package]]
name = "pandas"
version = "2.3.3"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "numpy" },
{ name = "python-dateutil" },
{ name = "pytz" },
{ name = "tzdata" },
]
sdist = { url = "https://files.pythonhosted.org/packages/33/01/d40b85317f86cf08d853a4f495195c73815fdf205eef3993821720274518/pandas-2.3.3.tar.gz", hash = "sha256:e05e1af93b977f7eafa636d043f9f94c7ee3ac81af99c13508215942e64c993b", size = 4495223 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/c1/fa/7ac648108144a095b4fb6aa3de1954689f7af60a14cf25583f4960ecb878/pandas-2.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:602b8615ebcc4a0c1751e71840428ddebeb142ec02c786e8ad6b1ce3c8dec523", size = 11578790 },
{ url = "https://files.pythonhosted.org/packages/9b/35/74442388c6cf008882d4d4bdfc4109be87e9b8b7ccd097ad1e7f006e2e95/pandas-2.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8fe25fc7b623b0ef6b5009149627e34d2a4657e880948ec3c840e9402e5c1b45", size = 10833831 },
{ url = "https://files.pythonhosted.org/packages/fe/e4/de154cbfeee13383ad58d23017da99390b91d73f8c11856f2095e813201b/pandas-2.3.3-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b468d3dad6ff947df92dcb32ede5b7bd41a9b3cceef0a30ed925f6d01fb8fa66", size = 12199267 },
{ url = "https://files.pythonhosted.org/packages/bf/c9/63f8d545568d9ab91476b1818b4741f521646cbdd151c6efebf40d6de6f7/pandas-2.3.3-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b98560e98cb334799c0b07ca7967ac361a47326e9b4e5a7dfb5ab2b1c9d35a1b", size = 12789281 },
{ url = "https://files.pythonhosted.org/packages/f2/00/a5ac8c7a0e67fd1a6059e40aa08fa1c52cc00709077d2300e210c3ce0322/pandas-2.3.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:1d37b5848ba49824e5c30bedb9c830ab9b7751fd049bc7914533e01c65f79791", size = 13240453 },
{ url = "https://files.pythonhosted.org/packages/27/4d/5c23a5bc7bd209231618dd9e606ce076272c9bc4f12023a70e03a86b4067/pandas-2.3.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:db4301b2d1f926ae677a751eb2bd0e8c5f5319c9cb3f88b0becbbb0b07b34151", size = 13890361 },
{ url = "https://files.pythonhosted.org/packages/8e/59/712db1d7040520de7a4965df15b774348980e6df45c129b8c64d0dbe74ef/pandas-2.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:f086f6fe114e19d92014a1966f43a3e62285109afe874f067f5abbdcbb10e59c", size = 11348702 },
{ url = "https://files.pythonhosted.org/packages/9c/fb/231d89e8637c808b997d172b18e9d4a4bc7bf31296196c260526055d1ea0/pandas-2.3.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:6d21f6d74eb1725c2efaa71a2bfc661a0689579b58e9c0ca58a739ff0b002b53", size = 11597846 },
{ url = "https://files.pythonhosted.org/packages/5c/bd/bf8064d9cfa214294356c2d6702b716d3cf3bb24be59287a6a21e24cae6b/pandas-2.3.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3fd2f887589c7aa868e02632612ba39acb0b8948faf5cc58f0850e165bd46f35", size = 10729618 },
{ url = "https://files.pythonhosted.org/packages/57/56/cf2dbe1a3f5271370669475ead12ce77c61726ffd19a35546e31aa8edf4e/pandas-2.3.3-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:ecaf1e12bdc03c86ad4a7ea848d66c685cb6851d807a26aa245ca3d2017a1908", size = 11737212 },
{ url = "https://files.pythonhosted.org/packages/e5/63/cd7d615331b328e287d8233ba9fdf191a9c2d11b6af0c7a59cfcec23de68/pandas-2.3.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b3d11d2fda7eb164ef27ffc14b4fcab16a80e1ce67e9f57e19ec0afaf715ba89", size = 12362693 },
{ url = "https://files.pythonhosted.org/packages/a6/de/8b1895b107277d52f2b42d3a6806e69cfef0d5cf1d0ba343470b9d8e0a04/pandas-2.3.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a68e15f780eddf2b07d242e17a04aa187a7ee12b40b930bfdd78070556550e98", size = 12771002 },
{ url = "https://files.pythonhosted.org/packages/87/21/84072af3187a677c5893b170ba2c8fbe450a6ff911234916da889b698220/pandas-2.3.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:371a4ab48e950033bcf52b6527eccb564f52dc826c02afd9a1bc0ab731bba084", size = 13450971 },
{ url = "https://files.pythonhosted.org/packages/86/41/585a168330ff063014880a80d744219dbf1dd7a1c706e75ab3425a987384/pandas-2.3.3-cp312-cp312-win_amd64.whl", hash = "sha256:a16dcec078a01eeef8ee61bf64074b4e524a2a3f4b3be9326420cabe59c4778b", size = 10992722 },
{ url = "https://files.pythonhosted.org/packages/cd/4b/18b035ee18f97c1040d94debd8f2e737000ad70ccc8f5513f4eefad75f4b/pandas-2.3.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:56851a737e3470de7fa88e6131f41281ed440d29a9268dcbf0002da5ac366713", size = 11544671 },
{ url = "https://files.pythonhosted.org/packages/31/94/72fac03573102779920099bcac1c3b05975c2cb5f01eac609faf34bed1ca/pandas-2.3.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:bdcd9d1167f4885211e401b3036c0c8d9e274eee67ea8d0758a256d60704cfe8", size = 10680807 },
{ url = "https://files.pythonhosted.org/packages/16/87/9472cf4a487d848476865321de18cc8c920b8cab98453ab79dbbc98db63a/pandas-2.3.3-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:e32e7cc9af0f1cc15548288a51a3b681cc2a219faa838e995f7dc53dbab1062d", size = 11709872 },
{ url = "https://files.pythonhosted.org/packages/15/07/284f757f63f8a8d69ed4472bfd85122bd086e637bf4ed09de572d575a693/pandas-2.3.3-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:318d77e0e42a628c04dc56bcef4b40de67918f7041c2b061af1da41dcff670ac", size = 12306371 },
{ url = "https://files.pythonhosted.org/packages/33/81/a3afc88fca4aa925804a27d2676d22dcd2031c2ebe08aabd0ae55b9ff282/pandas-2.3.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:4e0a175408804d566144e170d0476b15d78458795bb18f1304fb94160cabf40c", size = 12765333 },
{ url = "https://files.pythonhosted.org/packages/8d/0f/b4d4ae743a83742f1153464cf1a8ecfafc3ac59722a0b5c8602310cb7158/pandas-2.3.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:93c2d9ab0fc11822b5eece72ec9587e172f63cff87c00b062f6e37448ced4493", size = 13418120 },
{ url = "https://files.pythonhosted.org/packages/4f/c7/e54682c96a895d0c808453269e0b5928a07a127a15704fedb643e9b0a4c8/pandas-2.3.3-cp313-cp313-win_amd64.whl", hash = "sha256:f8bfc0e12dc78f777f323f55c58649591b2cd0c43534e8355c51d3fede5f4dee", size = 10993991 },
{ url = "https://files.pythonhosted.org/packages/f9/ca/3f8d4f49740799189e1395812f3bf23b5e8fc7c190827d55a610da72ce55/pandas-2.3.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:75ea25f9529fdec2d2e93a42c523962261e567d250b0013b16210e1d40d7c2e5", size = 12048227 },
{ url = "https://files.pythonhosted.org/packages/0e/5a/f43efec3e8c0cc92c4663ccad372dbdff72b60bdb56b2749f04aa1d07d7e/pandas-2.3.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:74ecdf1d301e812db96a465a525952f4dde225fdb6d8e5a521d47e1f42041e21", size = 11411056 },
{ url = "https://files.pythonhosted.org/packages/46/b1/85331edfc591208c9d1a63a06baa67b21d332e63b7a591a5ba42a10bb507/pandas-2.3.3-cp313-cp313t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6435cb949cb34ec11cc9860246ccb2fdc9ecd742c12d3304989017d53f039a78", size = 11645189 },
{ url = "https://files.pythonhosted.org/packages/44/23/78d645adc35d94d1ac4f2a3c4112ab6f5b8999f4898b8cdf01252f8df4a9/pandas-2.3.3-cp313-cp313t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:900f47d8f20860de523a1ac881c4c36d65efcb2eb850e6948140fa781736e110", size = 12121912 },
{ url = "https://files.pythonhosted.org/packages/53/da/d10013df5e6aaef6b425aa0c32e1fc1f3e431e4bcabd420517dceadce354/pandas-2.3.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:a45c765238e2ed7d7c608fc5bc4a6f88b642f2f01e70c0c23d2224dd21829d86", size = 12712160 },
{ url = "https://files.pythonhosted.org/packages/bd/17/e756653095a083d8a37cbd816cb87148debcfcd920129b25f99dd8d04271/pandas-2.3.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:c4fc4c21971a1a9f4bdb4c73978c7f7256caa3e62b323f70d6cb80db583350bc", size = 13199233 },
{ url = "https://files.pythonhosted.org/packages/04/fd/74903979833db8390b73b3a8a7d30d146d710bd32703724dd9083950386f/pandas-2.3.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:ee15f284898e7b246df8087fc82b87b01686f98ee67d85a17b7ab44143a3a9a0", size = 11540635 },
{ url = "https://files.pythonhosted.org/packages/21/00/266d6b357ad5e6d3ad55093a7e8efc7dd245f5a842b584db9f30b0f0a287/pandas-2.3.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:1611aedd912e1ff81ff41c745822980c49ce4a7907537be8692c8dbc31924593", size = 10759079 },
{ url = "https://files.pythonhosted.org/packages/ca/05/d01ef80a7a3a12b2f8bbf16daba1e17c98a2f039cbc8e2f77a2c5a63d382/pandas-2.3.3-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6d2cefc361461662ac48810cb14365a365ce864afe85ef1f447ff5a1e99ea81c", size = 11814049 },
{ url = "https://files.pythonhosted.org/packages/15/b2/0e62f78c0c5ba7e3d2c5945a82456f4fac76c480940f805e0b97fcbc2f65/pandas-2.3.3-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ee67acbbf05014ea6c763beb097e03cd629961c8a632075eeb34247120abcb4b", size = 12332638 },
{ url = "https://files.pythonhosted.org/packages/c5/33/dd70400631b62b9b29c3c93d2feee1d0964dc2bae2e5ad7a6c73a7f25325/pandas-2.3.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:c46467899aaa4da076d5abc11084634e2d197e9460643dd455ac3db5856b24d6", size = 12886834 },
{ url = "https://files.pythonhosted.org/packages/d3/18/b5d48f55821228d0d2692b34fd5034bb185e854bdb592e9c640f6290e012/pandas-2.3.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:6253c72c6a1d990a410bc7de641d34053364ef8bcd3126f7e7450125887dffe3", size = 13409925 },
{ url = "https://files.pythonhosted.org/packages/a6/3d/124ac75fcd0ecc09b8fdccb0246ef65e35b012030defb0e0eba2cbbbe948/pandas-2.3.3-cp314-cp314-win_amd64.whl", hash = "sha256:1b07204a219b3b7350abaae088f451860223a52cfb8a6c53358e7948735158e5", size = 11109071 },
{ url = "https://files.pythonhosted.org/packages/89/9c/0e21c895c38a157e0faa1fb64587a9226d6dd46452cac4532d80c3c4a244/pandas-2.3.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:2462b1a365b6109d275250baaae7b760fd25c726aaca0054649286bcfbb3e8ec", size = 12048504 },
{ url = "https://files.pythonhosted.org/packages/d7/82/b69a1c95df796858777b68fbe6a81d37443a33319761d7c652ce77797475/pandas-2.3.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:0242fe9a49aa8b4d78a4fa03acb397a58833ef6199e9aa40a95f027bb3a1b6e7", size = 11410702 },
{ url = "https://files.pythonhosted.org/packages/f9/88/702bde3ba0a94b8c73a0181e05144b10f13f29ebfc2150c3a79062a8195d/pandas-2.3.3-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:a21d830e78df0a515db2b3d2f5570610f5e6bd2e27749770e8bb7b524b89b450", size = 11634535 },
{ url = "https://files.pythonhosted.org/packages/a4/1e/1bac1a839d12e6a82ec6cb40cda2edde64a2013a66963293696bbf31fbbb/pandas-2.3.3-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2e3ebdb170b5ef78f19bfb71b0dc5dc58775032361fa188e814959b74d726dd5", size = 12121582 },
{ url = "https://files.pythonhosted.org/packages/44/91/483de934193e12a3b1d6ae7c8645d083ff88dec75f46e827562f1e4b4da6/pandas-2.3.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:d051c0e065b94b7a3cea50eb1ec32e912cd96dba41647eb24104b6c6c14c5788", size = 12699963 },
{ url = "https://files.pythonhosted.org/packages/70/44/5191d2e4026f86a2a109053e194d3ba7a31a2d10a9c2348368c63ed4e85a/pandas-2.3.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:3869faf4bd07b3b66a9f462417d0ca3a9df29a9f6abd5d0d0dbab15dac7abe87", size = 13202175 },
]
[[package]] [[package]]
name = "pillow" name = "pillow"
version = "12.0.0" version = "12.0.0"
@ -611,6 +980,92 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/95/7e/f896623c3c635a90537ac093c6a618ebe1a90d87206e42309cb5d98a1b9e/pillow-12.0.0-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:b290fd8aa38422444d4b50d579de197557f182ef1068b75f5aa8558638b8d0a5", size = 6997850 }, { url = "https://files.pythonhosted.org/packages/95/7e/f896623c3c635a90537ac093c6a618ebe1a90d87206e42309cb5d98a1b9e/pillow-12.0.0-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:b290fd8aa38422444d4b50d579de197557f182ef1068b75f5aa8558638b8d0a5", size = 6997850 },
] ]
[[package]]
name = "pluggy"
version = "1.6.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/f9/e2/3e91f31a7d2b083fe6ef3fa267035b518369d9511ffab804f839851d2779/pluggy-1.6.0.tar.gz", hash = "sha256:7dcc130b76258d33b90f61b658791dede3486c3e6bfb003ee5c9bfb396dd22f3", size = 69412 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl", hash = "sha256:e920276dd6813095e9377c0bc5566d94c932c33b27a3e3945d8389c374dd4746", size = 20538 },
]
[[package]]
name = "py-cpuinfo"
version = "9.0.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/37/a8/d832f7293ebb21690860d2e01d8115e5ff6f2ae8bbdc953f0eb0fa4bd2c7/py-cpuinfo-9.0.0.tar.gz", hash = "sha256:3cdbbf3fac90dc6f118bfd64384f309edeadd902d7c8fb17f02ffa1fc3f49690", size = 104716 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/e0/a9/023730ba63db1e494a271cb018dcd361bd2c917ba7004c3e49d5daf795a2/py_cpuinfo-9.0.0-py3-none-any.whl", hash = "sha256:859625bc251f64e21f077d099d4162689c762b5d6a4c3c97553d56241c9674d5", size = 22335 },
]
[[package]]
name = "pygments"
version = "2.19.2"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/b0/77/a5b8c569bf593b0140bde72ea885a803b82086995367bf2037de0159d924/pygments-2.19.2.tar.gz", hash = "sha256:636cb2477cec7f8952536970bc533bc43743542f70392ae026374600add5b887", size = 4968631 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/c7/21/705964c7812476f378728bdf590ca4b771ec72385c533964653c68e86bdc/pygments-2.19.2-py3-none-any.whl", hash = "sha256:86540386c03d588bb81d44bc3928634ff26449851e99741617ecb9037ee5ec0b", size = 1225217 },
]
[[package]]
name = "pyparsing"
version = "3.2.5"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/f2/a5/181488fc2b9d093e3972d2a472855aae8a03f000592dbfce716a512b3359/pyparsing-3.2.5.tar.gz", hash = "sha256:2df8d5b7b2802ef88e8d016a2eb9c7aeaa923529cd251ed0fe4608275d4105b6", size = 1099274 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/10/5e/1aa9a93198c6b64513c9d7752de7422c06402de6600a8767da1524f9570b/pyparsing-3.2.5-py3-none-any.whl", hash = "sha256:e38a4f02064cf41fe6593d328d0512495ad1f3d8a91c4f73fc401b3079a59a5e", size = 113890 },
]
[[package]]
name = "pytest"
version = "8.4.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "colorama", marker = "sys_platform == 'win32'" },
{ name = "iniconfig" },
{ name = "packaging" },
{ name = "pluggy" },
{ name = "pygments" },
]
sdist = { url = "https://files.pythonhosted.org/packages/a3/5c/00a0e072241553e1a7496d638deababa67c5058571567b92a7eaa258397c/pytest-8.4.2.tar.gz", hash = "sha256:86c0d0b93306b961d58d62a4db4879f27fe25513d4b969df351abdddb3c30e01", size = 1519618 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/a8/a4/20da314d277121d6534b3a980b29035dcd51e6744bd79075a6ce8fa4eb8d/pytest-8.4.2-py3-none-any.whl", hash = "sha256:872f880de3fc3a5bdc88a11b39c9710c3497a547cfa9320bc3c5e62fbf272e79", size = 365750 },
]
[[package]]
name = "pytest-benchmark"
version = "5.2.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "py-cpuinfo" },
{ name = "pytest" },
]
sdist = { url = "https://files.pythonhosted.org/packages/91/84/84ba011c4b2a44c8fce772be6124821a27cecd0f69b324f24ef4c1172863/pytest_benchmark-5.2.0.tar.gz", hash = "sha256:75731991edf6c807d0699130afbb4ba77d8ce8e3b8314662c340ee8e1db19f43", size = 339143 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/b7/c2/57de9aa286a2f6d00c52a7bb4b16dbbfa2a6c80b4a4f0e415c874269a4a6/pytest_benchmark-5.2.0-py3-none-any.whl", hash = "sha256:0631cdf19f6032fc46d6bf9e8d15931d78473228b579a3fd84ca5e2f0e8ee06c", size = 44194 },
]
[[package]]
name = "python-dateutil"
version = "2.9.0.post0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "six" },
]
sdist = { url = "https://files.pythonhosted.org/packages/66/c0/0c8b6ad9f17a802ee498c46e004a0eb49bc148f2fd230864601a86dcf6db/python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3", size = 342432 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427", size = 229892 },
]
[[package]]
name = "pytz"
version = "2025.2"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/f8/bf/abbd3cdfb8fbc7fb3d4d38d320f2441b1e7cbe29be4f23797b4a2b5d8aac/pytz-2025.2.tar.gz", hash = "sha256:360b9e3dbb49a209c21ad61809c7fb453643e048b38924c765813546746e81c3", size = 320884 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/81/c4/34e93fe5f5429d7570ec1fa436f1986fb1f00c3e0f43a589fe2bbcd22c3f/pytz-2025.2-py2.py3-none-any.whl", hash = "sha256:5ddf76296dd8c44c26eb8f4b6f35488f3ccbf6fbbd7adee0b7262d43f0ec2f00", size = 509225 },
]
[[package]] [[package]]
name = "pyyaml" name = "pyyaml"
version = "6.0.3" version = "6.0.3"
@ -802,8 +1257,14 @@ source = { editable = "." }
dependencies = [ dependencies = [
{ name = "flask" }, { name = "flask" },
{ name = "flask-cors" }, { name = "flask-cors" },
{ name = "gunicorn" },
{ name = "matplotlib" },
{ name = "nltk" }, { name = "nltk" },
{ name = "numpy" }, { name = "numpy" },
{ name = "pandas" },
{ name = "pytest" },
{ name = "pytest-benchmark" },
{ name = "seaborn" },
{ name = "sentence-transformers" }, { name = "sentence-transformers" },
{ name = "transformers" }, { name = "transformers" },
] ]
@ -812,8 +1273,14 @@ dependencies = [
requires-dist = [ requires-dist = [
{ name = "flask", specifier = ">=2.3.2,<3.0.0" }, { name = "flask", specifier = ">=2.3.2,<3.0.0" },
{ name = "flask-cors", specifier = ">=4.0.0,<5.0.0" }, { name = "flask-cors", specifier = ">=4.0.0,<5.0.0" },
{ name = "gunicorn", specifier = ">=22.0.0,<23.0.0" },
{ name = "matplotlib", specifier = ">=3.10.7" },
{ name = "nltk", specifier = ">=3.8.1,<4.0.0" }, { name = "nltk", specifier = ">=3.8.1,<4.0.0" },
{ name = "numpy", specifier = ">=1.25.0,<2.0.0" }, { name = "numpy", specifier = ">=1.25.0,<2.0.0" },
{ name = "pandas", specifier = ">=2.3.3" },
{ name = "pytest", specifier = ">=8.4.2" },
{ name = "pytest-benchmark", specifier = ">=5.2.0" },
{ name = "seaborn", specifier = ">=0.13.2" },
{ name = "sentence-transformers", specifier = ">=2.2.2,<3.0.0" }, { name = "sentence-transformers", specifier = ">=2.2.2,<3.0.0" },
{ name = "transformers", specifier = ">=4.30.2,<5.0.0" }, { name = "transformers", specifier = ">=4.30.2,<5.0.0" },
] ]
@ -928,6 +1395,20 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/64/47/a494741db7280eae6dc033510c319e34d42dd41b7ac0c7ead39354d1a2b5/scipy-1.16.3-cp314-cp314t-win_arm64.whl", hash = "sha256:21d9d6b197227a12dcbf9633320a4e34c6b0e51c57268df255a0942983bac562", size = 26464127 }, { url = "https://files.pythonhosted.org/packages/64/47/a494741db7280eae6dc033510c319e34d42dd41b7ac0c7ead39354d1a2b5/scipy-1.16.3-cp314-cp314t-win_arm64.whl", hash = "sha256:21d9d6b197227a12dcbf9633320a4e34c6b0e51c57268df255a0942983bac562", size = 26464127 },
] ]
[[package]]
name = "seaborn"
version = "0.13.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "matplotlib" },
{ name = "numpy" },
{ name = "pandas" },
]
sdist = { url = "https://files.pythonhosted.org/packages/86/59/a451d7420a77ab0b98f7affa3a1d78a313d2f7281a57afb1a34bae8ab412/seaborn-0.13.2.tar.gz", hash = "sha256:93e60a40988f4d65e9f4885df477e2fdaff6b73a9ded434c1ab356dd57eefff7", size = 1457696 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/83/11/00d3c3dfc25ad54e731d91449895a79e4bf2384dc3ac01809010ba88f6d5/seaborn-0.13.2-py3-none-any.whl", hash = "sha256:636f8336facf092165e27924f223d3c62ca560b1f2bb5dff7ab7fad265361987", size = 294914 },
]
[[package]] [[package]]
name = "sentence-transformers" name = "sentence-transformers"
version = "2.7.0" version = "2.7.0"
@ -956,6 +1437,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl", hash = "sha256:062d34222ad13e0cc312a4c02d73f059e86a4acbfbdea8f8f76b28c99f306922", size = 1201486 }, { url = "https://files.pythonhosted.org/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl", hash = "sha256:062d34222ad13e0cc312a4c02d73f059e86a4acbfbdea8f8f76b28c99f306922", size = 1201486 },
] ]
[[package]]
name = "six"
version = "1.17.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/94/e7/b2c673351809dca68a0e064b6af791aa332cf192da575fd474ed7d6f16a2/six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81", size = 34031 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050 },
]
[[package]] [[package]]
name = "sympy" name = "sympy"
version = "1.14.0" version = "1.14.0"
@ -1113,6 +1603,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl", hash = "sha256:f0fa19c6845758ab08074a0cfa8b7aecb71c999ca73d62883bc25cc018c4e548", size = 44614 }, { url = "https://files.pythonhosted.org/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl", hash = "sha256:f0fa19c6845758ab08074a0cfa8b7aecb71c999ca73d62883bc25cc018c4e548", size = 44614 },
] ]
[[package]]
name = "tzdata"
version = "2025.2"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/95/32/1a225d6164441be760d75c2c42e2780dc0873fe382da3e98a2e1e48361e5/tzdata-2025.2.tar.gz", hash = "sha256:b60a638fcc0daffadf82fe0f57e53d06bdec2f36c4df66280ae79bce6bd6f2b9", size = 196380 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl", hash = "sha256:1a403fada01ff9221ca8044d701868fa132215d84beb92242d9acd2147f667a8", size = 347839 },
]
[[package]] [[package]]
name = "urllib3" name = "urllib3"
version = "2.5.0" version = "2.5.0"

33
deploy-models.sh Executable file
View file

@ -0,0 +1,33 @@
#!/bin/sh
set -eu
# rsync local models_cache to server shared cache
# reports server models not in local (manual cleanup required)
ssh=deploy-peoplesgrocers-website
base=/home/peoplesgrocers
project=salience
ssh $ssh "mkdir -p $base/$project/shared/models_cache"
test -d api/models_cache || { echo 'no local api/models_cache'; exit 1; }
echo "local models_cache size:"
du -sh api/models_cache
echo "syncing to $ssh:$base/$project/shared/models_cache/"
# do not use compression because these model files are basically random data
# the SSH connection is pretty spotting when transferring large files
rsync -va --info=progress2 --partial --append-verify api/models_cache/ $ssh:$base/$project/shared/models_cache/
# local models
local=$(cd api/models_cache && find . -maxdepth 2 -name 'models--*' -type d | sed 's|./||' | sort)
# server models
remote=$(ssh $ssh "cd $base/$project/shared/models_cache && find . -maxdepth 2 -name 'models--*' -type d | sed 's|./||'" | sort)
# report server models not in local
echo "checking for unused models on server..."
for r in $remote; do
echo "$local" | grep -q "^${r}$" || echo "unused: $r"
done

301
deploy.sh Executable file
View file

@ -0,0 +1,301 @@
#!/bin/sh
set -eu
# rsync wrapper for unreliable network connections
# my home network is spotty and rsync often dies mid-transfer
# this lets me manually retry the failed rsync and continue the deploy
rsync_retry() {
if ! rsync "$@"; then
echo ""
echo "rsync failed (probably network). run this manually:"
echo "rsync $*"
echo ""
printf "press enter after manual rsync completes to continue..."
read _
fi
}
# Deployment topology and zero-downtime process
#
# Directory structure on remote:
# $base/$project/
# base_port - starting port number (default 3100)
# releases/{stamp}_{hash}/
# dist/ - static assets served by nginx
# server/ - node server from frontend/server/entrypoint.express.js
# api/ - python flask API (salience/, nltk_data/, etc.)
# assigned_port - port allocated to frontend for this release
# assigned_api_port - port allocated to API for this release
# current -> releases/{latest}
# systemd/ - unit files per release (frontend + API)
#
# Zero-downtime deployment:
# 1. rsync new release (frontend/dist/ + frontend/server/ + api/)
# 2. install dependencies (npm for frontend, uv for API)
# 3. allocate two ports (frontend + API via get-next-port.sh)
# 4. generate systemd units for new release with unique ports
# - frontend: node server
# - API: gunicorn with 4 workers running Flask app
# 5. start new services, wait for health
# 6. update nginx upstream to point to new ports
# 7. reload nginx (graceful, no dropped connections)
# 8. stop old services
# 9. cleanup old releases (keep 3 most recent)
#
# Port allocation: get-next-port.sh reads base_port and existing
# assigned_port files to find first available port.
# Each release runs independently until cutover.
ssh=deploy-peoplesgrocers-website
base=/home/peoplesgrocers
project=salience
nginx_conf=/etc/nginx/sites-available/$project
service_listen_address=127.10.143.212
local_nginx_snippet="$HOME/src/work/infra/servers/chicago-web01/nginx/snippets/qwik-city-apps/salience.conf"
test -d frontend/dist || { echo 'no frontend/dist/'; exit 1; }
test -d frontend/server || { echo 'no frontend/server/'; exit 1; }
test -d .git || { echo 'not a git repo'; exit 1; }
git diff-index --quiet HEAD || { echo 'git repo dirty'; exit 1; }
hash=$(git rev-parse --short=8 HEAD)
stamp=$(date +%Y-%b-%d-%a-%I-%M%p | tr 'APM' 'apm')
release="${stamp}_${hash}"
service_name="${project}-${release}"
echo "deploying: $project @ $release"
printf "continue? [y/n] "
read ans
test "$ans" = "y" || exit 1
# prepare remote directories
ssh $ssh "mkdir -p $base/$project/{releases,systemd} $base/$project/releases/$release"
# sync both dist and server
echo "syncing dist..."
rsync_retry -tvaz frontend/dist/ $ssh:$base/$project/releases/$release/dist/
echo "syncing server..."
rsync_retry -tvaz frontend/server/ $ssh:$base/$project/releases/$release/server/
# copy server package.json and install dependencies
echo "copying server package.json..."
scp frontend/package.json $ssh:$base/$project/releases/$release/package.json
echo "installing server dependencies..."
ssh $ssh "source ~/.nvm/nvm.sh && cd $base/$project/releases/$release && npm install"
# sync api directory (exclude benchmarks, include specific files/dirs)
echo "syncing api..."
rsync_retry -tvaz \
--include='salience/' --include='salience/**' \
--include='nltk_data/' --include='nltk_data/**' \
--include='pyproject.toml' \
--include='uv.lock' \
--include='transcript.txt' \
--include='README.md' \
--exclude='*' \
api/ $ssh:$base/$project/releases/$release/api/
# link to shared models cache
echo "linking to shared models_cache..."
ssh $ssh "mkdir -p $base/$project/shared/models_cache"
ssh $ssh "ln -sfn ../../../shared/models_cache $base/$project/releases/$release/api/models_cache"
echo "installing api dependencies..."
ssh $ssh "cd $base/$project/releases/$release/api && ~/.local/bin/uv sync"
set -x
# determine ports for this release (frontend and api)
port=$(sh get-next-port.sh)
echo "frontend port for this release: $port"
api_port=$(sh get-next-port.sh)
echo "api port for this release: $api_port"
# record port assignments
ssh $ssh "echo $port > $base/$project/releases/$release/assigned_port"
ssh $ssh "echo $api_port > $base/$project/releases/$release/assigned_api_port"
set +x
# generate systemd unit file
unit_content="[Unit]
Description=${project} release ${release}
After=network.target
[Service]
Type=simple
User=peoplesgrocers
WorkingDirectory=$base/$project/releases/$release
Environment=\"PORT=$port\"
Environment=\"ORIGIN=https://peoplesgrocers.com\"
ExecStart=/home/peoplesgrocers/.nvm/versions/node/v24.10.0/bin/node server/entry.express.js
Restart=on-failure
RestartSec=10
[Install]
WantedBy=multi-user.target"
echo "$unit_content" | ssh $ssh "cat > $base/$project/systemd/${service_name}.service"
echo ""
echo "systemd unit created at: $base/$project/systemd/${service_name}.service"
echo ""
# generate systemd unit file for API
api_service_name="${project}-api-${release}"
api_unit_content="[Unit]
Description=${project} API release ${release}
After=network.target
[Service]
Type=simple
User=peoplesgrocers
WorkingDirectory=$base/$project/releases/$release/api
Environment=\"PORT=$api_port\"
ExecStart=$base/$project/releases/$release/api/.venv/bin/gunicorn --bind ${service_listen_address}:$api_port --workers 4 salience:app
Restart=on-failure
RestartSec=10
[Install]
WantedBy=multi-user.target"
echo "$api_unit_content" | ssh $ssh "cat > $base/$project/systemd/${api_service_name}.service"
echo ""
echo "API systemd unit created at: $base/$project/systemd/${api_service_name}.service"
echo ""
# find old services
old_service=$(ssh $ssh "systemctl list-units --type=service --state=running | grep '^${project}-' | grep -v 'api' | awk '{print \$1}' | head -1" || true)
if [ -n "$old_service" ]; then
old_port=$(ssh $ssh "systemctl show $old_service --property=Environment" | sed -n 's/.*PORT=\([0-9]*\).*/\1/p')
echo "old frontend service: $old_service (port $old_port)"
else
old_port=""
echo "no old frontend service running"
fi
old_api_service=$(ssh $ssh "systemctl list-units --type=service --state=running | grep '^${project}-api-' | awk '{print \$1}' | head -1" || true)
if [ -n "$old_api_service" ]; then
old_api_port=$(ssh $ssh "systemctl show $old_api_service --property=Environment" | sed -n 's/.*PORT=\([0-9]*\).*/\1/p')
echo "old API service: $old_api_service (port $old_api_port)"
else
old_api_port=""
echo "no old API service running"
fi
# Update local nginx snippet with new port
if [ -n "$local_nginx_snippet" ] && [ -f "$local_nginx_snippet" ]; then
echo "updating local nginx snippet: $local_nginx_snippet"
if [ -n "$old_port" ]; then
echo " changing port $old_port -> $port"
sed -i.bak "s/${service_listen_address}:${old_port}/${service_listen_address}:${port}/g" "$local_nginx_snippet"
else
echo " setting port to $port"
sed -i.bak "s/${service_listen_address}:[0-9]\{4,5\}/${service_listen_address}:${port}/g" "$local_nginx_snippet"
fi
rm -f "${local_nginx_snippet}.bak"
echo "nginx snippet updated locally"
else
echo "warning: local_nginx_snippet not set or file not found"
fi
echo ""
echo "--- run these commands on $ssh ---"
echo ""
echo "# install and start new services"
echo "sudo ln -sf $base/$project/systemd/${service_name}.service /etc/systemd/system/"
echo "sudo ln -sf $base/$project/systemd/${api_service_name}.service /etc/systemd/system/"
echo "sudo systemctl daemon-reload"
echo "sudo systemctl start ${service_name}"
echo "sudo systemctl start ${api_service_name}"
echo ""
echo "# verify services are healthy"
echo "sudo systemctl status ${service_name}"
echo "sudo systemctl status ${api_service_name}"
echo "curl http://${service_listen_address}:$port/"
echo "curl http://${service_listen_address}:$api_port/models"
echo ""
echo "# then deploy your nginx configuration and reload nginx"
echo ""
if [ -n "$old_service" ]; then
echo "# stop old frontend service"
echo "sudo systemctl stop $old_service"
echo ""
fi
if [ -n "$old_api_service" ]; then
echo "# stop old API service"
echo "sudo systemctl stop $old_api_service"
echo ""
fi
echo "# update current symlink"
echo "ln -sfn releases/$release $base/$project/current"
echo ""
echo "--- end commands ---"
echo ""
printf "test health checks? [y/n] "
read ans
if [ "$ans" = "y" ]; then
echo "testing frontend..."
ssh $ssh "curl -v http://${service_listen_address}:$port/" || echo "frontend health check failed"
echo "testing API..."
ssh $ssh "curl -v http://${service_listen_address}:$api_port/models" || echo "API health check failed"
fi
if [ -n "$old_service" ]; then
echo ""
printf "stop old frontend service ($old_service)? [y/n] "
read ans
if [ "$ans" = "y" ]; then
ssh $ssh "sudo systemctl stop $old_service"
echo "old frontend service stopped"
fi
fi
if [ -n "$old_api_service" ]; then
echo ""
printf "stop old API service ($old_api_service)? [y/n] "
read ans
if [ "$ans" = "y" ]; then
ssh $ssh "sudo systemctl stop $old_api_service"
echo "old API service stopped"
fi
fi
echo ""
printf "update current symlink? [y/n] "
read ans
if [ "$ans" = "y" ]; then
ssh $ssh "ln -sfn releases/$release $base/$project/current"
echo "current -> $release"
fi
echo ""
echo "cleanup old releases (keep 3):"
old_releases=$(ssh $ssh "cd $base/$project/releases && ls -t | sed -n '4,\$p'" || true)
if [ -n "$old_releases" ]; then
echo "$old_releases"
printf "remove these? [y/n] "
read ans
if [ "$ans" = "y" ]; then
ssh $ssh "cd $base/$project/releases && ls -t | sed -n '4,\$p' | while read r; do
rm -rf \"\$r\"
sudo systemctl stop ${project}-\${r} 2>/dev/null || true
sudo systemctl stop ${project}-api-\${r} 2>/dev/null || true
sudo rm -f /etc/systemd/system/${project}-\${r}.service
sudo rm -f /etc/systemd/system/${project}-api-\${r}.service
rm -f $base/$project/systemd/${project}-\${r}.service
rm -f $base/$project/systemd/${project}-api-\${r}.service
done"
ssh $ssh "sudo systemctl daemon-reload"
echo "cleanup done"
fi
else
echo "no old releases to clean"
fi
echo ""
echo "done: $release (frontend port $port, API port $api_port)"

View file

@ -63,3 +63,23 @@ The production build will generate client and server modules by running both cli
```shell ```shell
npm run build # or `yarn build` npm run build # or `yarn build`
``` ```
## Static Site Generator (Node.js)
Be sure to configure your server to serve very long cache headers for the `build/**/*.js` files.
Typically you'd set the `Cache-Control` header for those files to `public, max-age=31536000, immutable`.
```shell
npm run build.server
```
## Express Server
This app has a minimal [Express server](https://expressjs.com/) implementation. After running a full build, you can preview the build using the command:
```
npm run serve
```
Then visit [http://localhost:8080/](http://localhost:8080/)

View file

@ -0,0 +1,15 @@
import { nodeServerAdapter } from "@builder.io/qwik-city/adapters/node-server/vite";
import { extendConfig } from "@builder.io/qwik-city/vite";
import baseConfig from "../../vite.config";
export default extendConfig(baseConfig, () => {
return {
build: {
ssr: true,
rollupOptions: {
input: ["src/entry.express.tsx", "@qwik-city-plan"],
},
},
plugins: [nodeServerAdapter({ name: "express" })],
};
});

View file

@ -0,0 +1,24 @@
import { staticAdapter } from "@builder.io/qwik-city/adapters/static/vite";
import { extendConfig } from "@builder.io/qwik-city/vite";
import baseConfig from "../../vite.config";
export default extendConfig(baseConfig, () => {
return {
build: {
ssr: true,
rollupOptions: {
input: ["@qwik-city-plan"],
},
},
plugins: [
staticAdapter({
origin: "https://peoplesgrocers.com",
// Specify which routes to statically generate
routes: [
"/about",
// Add more static routes here as needed
],
}),
],
};
});

File diff suppressed because it is too large Load diff

View file

@ -11,6 +11,8 @@
"build": "qwik build", "build": "qwik build",
"build.client": "vite build", "build.client": "vite build",
"build.preview": "vite build --ssr src/entry.preview.tsx", "build.preview": "vite build --ssr src/entry.preview.tsx",
"build.server": "qwik check-client src dist && vite build -c adapters/express/vite.config.ts",
"build.static": "vite build -c adapters/static/vite.config.ts",
"build.types": "tsc --incremental --noEmit", "build.types": "tsc --incremental --noEmit",
"deploy": "echo 'Run \"npm run qwik add\" to install a server adapter'", "deploy": "echo 'Run \"npm run qwik add\" to install a server adapter'",
"dev": "vite --mode ssr", "dev": "vite --mode ssr",
@ -19,6 +21,7 @@
"fmt.check": "prettier --check .", "fmt.check": "prettier --check .",
"lint": "eslint \"src/**/*.ts*\"", "lint": "eslint \"src/**/*.ts*\"",
"preview": "qwik build preview && vite preview --open", "preview": "qwik build preview && vite preview --open",
"serve": "node server/entry.express",
"start": "vite --open --mode ssr", "start": "vite --open --mode ssr",
"qwik": "qwik" "qwik": "qwik"
}, },
@ -27,7 +30,11 @@
"@builder.io/qwik-city": "^1.17.1", "@builder.io/qwik-city": "^1.17.1",
"@eslint/js": "latest", "@eslint/js": "latest",
"@tailwindcss/vite": "^4.1.16", "@tailwindcss/vite": "^4.1.16",
"@types/compression": "^1.7.2",
"@types/express": "^4.17.19",
"@types/node": "20.19.0", "@types/node": "20.19.0",
"compression": "^1.7.4",
"dotenv": "^16.3.2",
"eslint": "9.32.0", "eslint": "9.32.0",
"eslint-plugin-qwik": "^1.17.1", "eslint-plugin-qwik": "^1.17.1",
"globals": "16.4.0", "globals": "16.4.0",
@ -42,6 +49,7 @@
}, },
"dependencies": { "dependencies": {
"@tailwindcss/typography": "^0.5.19", "@tailwindcss/typography": "^0.5.19",
"express": "4.20.0",
"mathjs": "^15.0.0", "mathjs": "^15.0.0",
"prosemirror-commands": "^1.7.1", "prosemirror-commands": "^1.7.1",
"prosemirror-keymap": "^1.2.3", "prosemirror-keymap": "^1.2.3",

View file

@ -0,0 +1,73 @@
/*
* WHAT IS THIS FILE?
*
* It's the entry point for the Express HTTP server when building for production.
*
* Learn more about Node.js server integrations here:
* - https://qwik.dev/docs/deployments/node/
*
*/
import {
createQwikCity,
type PlatformNode,
} from "@builder.io/qwik-city/middleware/node";
import "dotenv/config";
import qwikCityPlan from "@qwik-city-plan";
import render from "./entry.ssr";
import express from "express";
import { fileURLToPath } from "node:url";
import { join } from "node:path";
declare global {
type QwikCityPlatform = PlatformNode;
}
// Directories where the static assets are located
const distDir = join(fileURLToPath(import.meta.url), "..", "..", "dist");
const buildDir = join(distDir, "build");
const assetsDir = join(distDir, "assets");
// Allow for dynamic port
const PORT = process.env.PORT ?? 3000;
// Create the Qwik City Node middleware
const { router, notFound } = createQwikCity({
render,
qwikCityPlan,
// getOrigin(req) {
// // If deploying under a proxy, you may need to build the origin from the request headers
// // https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-Proto
// const protocol = req.headers["x-forwarded-proto"] ?? "http";
// // https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-Host
// const host = req.headers["x-forwarded-host"] ?? req.headers.host;
// return `${protocol}://${host}`;
// }
});
// Create the express server
// https://expressjs.com/
const app = express();
// Enable gzip compression
// app.use(compression());
// Static asset handlers
// https://expressjs.com/en/starter/static-files.html
app.use(`/build`, express.static(buildDir, { immutable: true, maxAge: "1y" }));
app.use(
`/assets`,
express.static(assetsDir, { immutable: true, maxAge: "1y" }),
);
app.use(express.static(distDir, { redirect: false }));
// Use Qwik City's page and endpoint request handler
app.use(router);
// Use Qwik City's 404 handler
app.use(notFound);
// Start the express server
app.listen(PORT, () => {
/* eslint-disable */
console.log(`Server started: http://localhost:${PORT}/`);
});

View file

@ -6,21 +6,49 @@ import { Math } from "~/components/math/math"
# How Salience Works # How Salience Works
A couple of days ago I came across
[github.com/mattneary/salience](https://github.com/mattneary/salience) by Matt Neary. I thought it
was quite neat how he took sentence embeddings and in just a few lines of code
was able to determine the significance of all sentences in a document.
This post is an outsider's view of how salience works. If you're already working with ML models in Python, this will feel
torturously detailed. I wrote this for the rest of us old world programmers: compilers, networking, systems programming looking at
C++/Go/Rust, or the poor souls in the frontend Typescript mines.
For us refugees of the barbarian past, the tooling and notation can look foreign. I wanted to walk through the math and
numpy operations in detail to show what's actually happening with the data.
Salience highlights important sentences by treating your document as a graph where sentences that talk about similar things are connected. We then figure out which sentences are most "central" to the document's themes. Salience highlights important sentences by treating your document as a graph where sentences that talk about similar things are connected. We then figure out which sentences are most "central" to the document's themes.
## Step 1: Break Text into Sentences ## Step 1: Break Text into Sentences
We use NLTK's Punkt tokenizer to split text into sentences. This handles tricky cases where simple punctuation splitting fails: The first problem we need to solve is finding the sentences in a document. This is not as easy as splitting on newlines or periods. Consider this example:
*"Dr. Smith earned his Ph.D. in 1995."* ← This is **one** sentence, not three! *"Dr. Smith earned his Ph.D. in 1995."* ← This is **one** sentence, not three!
## Step 2: Convert Sentences to Embeddings Fortunately, this problem has been adequately solved for decades. We are going to use the **Punkt sentence splitter** (2003) available in the Natural Language Toolkit (NLTK) Python package.
Now we have <Math tex="N" /> sentences. We convert each one into a high-dimensional vector that captures its meaning: ## Step 2: Apply an Embedding Model
<Math display tex="\mathbf{E} = \text{model.encode}(\text{sentences}) \in \mathbb{R}^{N \times D}" /> Now we have <Math tex="N" /> sentences. We convert each one into a high-dimensional vector that captures its meaning. For example:
This gives us an **embeddings matrix** <Math tex="\mathbf{E}" /> where each row is one sentence: <Math tex="\mathbf{Sentence \space A} = [a_1, a_2, a_3, \ldots, a_D]" display="block" />
<Math tex="\mathbf{Sentence \space B} = [b_1, b_2, b_3, \ldots, b_D]" display="block" />
<Math tex="\mathbf{Sentence \space C} = [c_1, c_2, c_3, \ldots, c_D]" display="block" />
## Step 3: Build the Adjacency Matrix
Now we create a new <Math tex="N \times N" /> adjacency matrix <Math tex="\mathbf{A}" /> that measures how similar each pair of sentences is. For every pair of sentences <Math tex="i" /> and <Math tex="j" />, we need the **cosine similarity**:
<Math display tex="A_{ij} = \frac{\mathbf{e}_i \cdot \mathbf{e}_j}{\|\mathbf{e}_i\| \|\mathbf{e}_j\|}" />
Each <Math tex="A_{ij}" /> represents how strongly sentence <Math tex="i" /> is connected to sentence <Math tex="j" />.
- <Math tex="A_{ij} = 1" /> means sentences are identical in meaning
- <Math tex="A_{ij} = 0" /> means sentences are unrelated
- <Math tex="A_{ij} = -1" /> means sentences are opposite in meaning
You could work with these embedding vectors one at a time, using two for loops to build the adjacency matrix leetcode style. However, there's a way to delegate the computation to optimized libraries. Instead, organize all embeddings into a single matrix:
<Math display tex="\mathbf{E} = \begin{bmatrix} a_1 & a_2 & a_3 & \cdots & a_D \\ b_1 & b_2 & b_3 & \cdots & b_D \\ c_1 & c_2 & c_3 & \cdots & c_D \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ z_1 & z_2 & z_3 & \cdots & z_D \end{bmatrix}" /> <Math display tex="\mathbf{E} = \begin{bmatrix} a_1 & a_2 & a_3 & \cdots & a_D \\ b_1 & b_2 & b_3 & \cdots & b_D \\ c_1 & c_2 & c_3 & \cdots & c_D \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ z_1 & z_2 & z_3 & \cdots & z_D \end{bmatrix}" />
@ -29,38 +57,59 @@ Where:
- <Math tex="D" /> = embedding dimension (768 for all-mpnet-base-v2, 1024 for gte-large-en-v1.5) - <Math tex="D" /> = embedding dimension (768 for all-mpnet-base-v2, 1024 for gte-large-en-v1.5)
- Each row represents one sentence in semantic space - Each row represents one sentence in semantic space
## Step 3: Build the Adjacency Matrix **Step 3a: Compute all dot products**
Now we create a new matrix <Math tex="\mathbf{A}" /> that measures how similar each pair of sentences is. For every pair of sentences <Math tex="i" /> and <Math tex="j" />, we compute: <Math display tex="\mathbf{S} = \mathbf{E} \mathbf{E}^T" />
<Math display tex="A_{ij} = \frac{\mathbf{e}_i \cdot \mathbf{e}_j}{\|\mathbf{e}_i\| \|\mathbf{e}_j\|}" /> Since <Math tex="\mathbf{E}" /> is <Math tex="N \times D" /> and <Math tex="\mathbf{E}^T" /> is <Math tex="D \times N" />, their product gives us an <Math tex="N \times N" /> matrix where entry <Math tex="S_{ij} = \mathbf{e}_i \cdot \mathbf{e}_j" />.
This is the **cosine similarity** between their embedding vectors. It tells us: **Step 3b: Compute the norms and normalize**
- <Math tex="A_{ij} = 1" /> means sentences are identical in meaning
- <Math tex="A_{ij} = 0" /> means sentences are unrelated First, compute a vector of norms:
- <Math tex="A_{ij} = -1" /> means sentences are opposite in meaning
<Math display tex="\mathbf{n} = \begin{bmatrix} \|\mathbf{e}_1\| \\ \|\mathbf{e}_2\| \\ \|\mathbf{e}_3\| \\ \vdots \\ \|\mathbf{e}_N\| \end{bmatrix}" />
This is an <Math tex="(N, 1)" /> vector where each element is the magnitude of one sentence's embedding. Now we need to visit every single element of <Math tex="\mathbf{S}" /> to make the adjacency matrix <Math tex="A_{ij} = \frac{S_{ij}}{n_i \cdot n_j}" />:
<Math display tex="\mathbf{A} = \begin{bmatrix} \frac{S_{11}}{n_1 \cdot n_1} & \frac{S_{12}}{n_1 \cdot n_2} & \cdots & \frac{S_{1N}}{n_1 \cdot n_N} \\ \frac{S_{21}}{n_2 \cdot n_1} & \frac{S_{22}}{n_2 \cdot n_2} & \cdots & \frac{S_{2N}}{n_2 \cdot n_N} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{S_{N1}}{n_N \cdot n_1} & \frac{S_{N2}}{n_N \cdot n_2} & \cdots & \frac{S_{NN}}{n_N \cdot n_N} \end{bmatrix}" />
**Quick benchmark:** For a <Math tex="194 \times 768" /> embeddings matrix (194 sentences):
- Computing everything in Python for loops: **33.1 ms**
- Using <Math tex="\mathbf{E} \mathbf{E}^T" /> for dot products, but element-by-element normalization in Python: **10.9 ms** (saves 22.2 ms)
- Using numpy **broadcasting** for normalization too: **0.13 ms**
Broadcasting is a numpy feature where dividing arrays of different shapes automatically "stretches" the smaller array to match:
```python
def cos_sim(a):
sims = a @ a.T
norms = np.linalg.norm(a, axis=-1, keepdims=True)
sims /= norms # Divides each row i by norm[i]
sims /= norms.T # Divides each column j by norm[j]
return sims
```
The `keepdims=True` makes `norms` shape <Math tex="(N, 1)" /> instead of <Math tex="(N,)" />, which is crucial—when transposed, <Math tex="(N, 1)" /> becomes <Math tex="(1, N)" />, allowing the broadcasting to work for column-wise division.
The result is an <Math tex="N \times N" /> **adjacency matrix** where <Math tex="A_{ij}" /> represents how strongly sentence <Math tex="i" /> is connected to sentence <Math tex="j" />.
## Step 4: Clean Up the Graph ## Step 4: Clean Up the Graph
We make two adjustments to the adjacency matrix to get a cleaner graph: We make two adjustments to the adjacency matrix to make our TextRank work:
1. **Remove self-loops:** Set diagonal to zero (<Math tex="A_{ii} = 0" />) 1. **Remove self-loops:** Set diagonal to zero (<Math tex="A_{ii} = 0" />)
- A sentence shouldn't vote for its own importance
2. **Remove negative edges:** Set <Math tex="A_{ij} = \max(0, A_{ij})" /> 2. **Remove negative edges:** Set <Math tex="A_{ij} = \max(0, A_{ij})" />
- Sentences with opposite meanings get disconnected
**Important assumption:** This assumes your document has a coherent main idea and that sentences are generally on-topic. We're betting that the topic with the most "semantic mass" is the *correct* topic. A sentence shouldn't vote for its own importance. And sentences with opposite meanings get disconnected.
**Where this breaks down:** **Important assumption:** This assumes your document has a coherent main idea and that sentences are generally on-topic. We're betting that the topic with the most "semantic mass" is the *correct* topic. This is obviously not true for many documents:
- **Dialectical essays** that deliberately contrast opposing viewpoints
- **Documents heavy with quotes** that argue against something
- **Debate transcripts** where both sides are equally important
- **Critical analysis** that spends significant time explaining a position before refuting it
For example: "Nuclear power is dangerous. Critics say it causes meltdowns. However, modern reactors are actually very safe." - Dialectical essays that deliberately contrast opposing viewpoints
- Documents heavy with quotes that argue against something
- Debate transcripts where both sides are equally important
- Critical analysis that spends significant time explaining a position before refuting it
For example: "Nuclear power is dangerous. Critics say it causes meltdowns [...]. However, modern reactors are actually very safe."
The algorithm might highlight the criticism because multiple sentences cluster around "danger", even though the document's actual position is pro-nuclear. There's nothing inherent in the math that identifies authorial intent vs. quoted opposition. The algorithm might highlight the criticism because multiple sentences cluster around "danger", even though the document's actual position is pro-nuclear. There's nothing inherent in the math that identifies authorial intent vs. quoted opposition.

View file

@ -2,7 +2,6 @@ import {
component$, component$,
useSignal, useSignal,
useVisibleTask$, useVisibleTask$,
useComputed$,
$, $,
noSerialize, noSerialize,
useStore, useStore,
@ -12,7 +11,7 @@ import {
import { type DocumentHead, routeLoader$ } from "@builder.io/qwik-city"; import { type DocumentHead, routeLoader$ } from "@builder.io/qwik-city";
import { EditorState, Plugin, Transaction } from "prosemirror-state"; import { EditorState, Plugin, Transaction } from "prosemirror-state";
import { EditorView, Decoration, DecorationSet } from "prosemirror-view"; import { EditorView, Decoration, DecorationSet } from "prosemirror-view";
import { Schema, DOMParser, Node as PMNode } from "prosemirror-model"; import { Schema, Node as PMNode } from "prosemirror-model";
import { schema as basicSchema } from "prosemirror-schema-basic"; import { schema as basicSchema } from "prosemirror-schema-basic";
import { keymap } from "prosemirror-keymap"; import { keymap } from "prosemirror-keymap";
import { baseKeymap } from "prosemirror-commands"; import { baseKeymap } from "prosemirror-commands";
@ -123,7 +122,7 @@ export default component$(() => {
const models = useSignal<string[]>([]); const models = useSignal<string[]>([]);
const currentModel = useSignal("all-mpnet-base-v2"); const currentModel = useSignal("all-mpnet-base-v2");
const syncState = useSignal<SyncState>("clean"); const syncState = useSignal<SyncState>("clean");
const editorView = useSignal<EditorView | null>(null); const editorView = useSignal<NoSerialize<EditorView>>();
const sentenceDecorations = useSignal<SentenceDecoration[]>([]); const sentenceDecorations = useSignal<SentenceDecoration[]>([]);
const salienceData = useSignal<SalienceData | null>(null); const salienceData = useSignal<SalienceData | null>(null);
const debounceTimer = useSignal<number | null>(null); const debounceTimer = useSignal<number | null>(null);
@ -224,15 +223,20 @@ export default component$(() => {
// Parse the initial document text into separate paragraphs // Parse the initial document text into separate paragraphs
// Split by single newlines and preserve blank lines as empty paragraphs // Split by single newlines and preserve blank lines as empty paragraphs
const paragraphs = initialDocument.value const lines = initialDocument.value
.split('\n') .split('\n');
.map(line => {
// Create paragraph with text if line has content, otherwise empty paragraph const paragraphs: PMNode[] = [];
const content = line.length > 0 ? [salienceSchema.text(line)] : []; lines.forEach((line) => {
return salienceSchema.node("paragraph", null, content); // Create paragraph with text if line has content, otherwise empty paragraph
}); const content = line.length > 0 ? [salienceSchema.text(line)] : [];
//content.push(salienceSchema.node("hard_break"));
paragraphs.push(salienceSchema.node("paragraph", null, content));
});
console.log(paragraphs);
const initialDoc = salienceSchema.node("doc", null, paragraphs); const initialDoc = salienceSchema.node("doc", null, paragraphs);
console.log(initialDoc.textContent);
const state = EditorState.create({ const state = EditorState.create({
schema: salienceSchema, schema: salienceSchema,
@ -272,7 +276,7 @@ export default component$(() => {
}, },
}); });
editorView.value = view; editorView.value = noSerialize(view);
fetchSalienceData( fetchSalienceData(
currentModel.value, currentModel.value,

51
get-next-port.sh Executable file
View file

@ -0,0 +1,51 @@
#!/bin/sh
set -eu
# Port allocation for zero-downtime deployments
#
# Reads remote state to determine next available port.
# State files:
# $base/$project/base_port - starting port number
# $base/$project/releases/*/assigned_port - port for each release
#
# Algorithm:
# 1. read base_port (default 3100)
# 2. find all assigned_port files in releases/
# 3. return smallest unused port >= base_port
ssh=deploy-peoplesgrocers-website
base=/home/peoplesgrocers
project=salience
ssh $ssh "
set -eu
base=$base
project=$project
test -d \$base/\$project || { echo 'project dir does not exist' >&2; exit 1; }
# read or initialize base_port
if test -f \$base/\$project/base_port; then
base_port=\$(cat \$base/\$project/base_port)
else
base_port=3100
echo \$base_port > \$base/\$project/base_port
fi
# find all assigned ports
assigned=\$(find \$base/\$project/releases -name assigned_port -exec cat {} \; 2>/dev/null | sort -n || true)
# find first unused port
port=\$base_port
while true; do
found=0
for p in \$assigned; do
test \$p -eq \$port && { found=1; break; }
done
test \$found -eq 0 && break
port=\$((port + 1))
done
echo \$port
"