feat: add multiple models

This commit is contained in:
nobody 2025-10-30 16:26:48 -07:00
commit fee0e643e4
Signed by: GrocerPublishAgent
GPG key ID: D460CD54A9E3AB86
5 changed files with 517 additions and 32 deletions

View file

@ -13,9 +13,45 @@ NLTK_DATA_DIR = os.path.join(PROJECT_DIR, 'nltk_data')
nltk.data.path.insert(0, NLTK_DATA_DIR)
# Download to the custom location
nltk.download('punkt', download_dir=NLTK_DATA_DIR)
# Using punkt_tab (the modern tab-separated format introduced in NLTK 3.8+)
# instead of the older punkt pickle format
# The punkt_tab model version depends on the NLTK Python package version
# Check your NLTK version with: uv pip show nltk
nltk.download('punkt_tab', download_dir=NLTK_DATA_DIR)
# Available models for the demo
AVAILABLE_MODELS = {
'all-mpnet-base-v2': 'all-mpnet-base-v2', # Dec 2020
'gte-large-en-v1.5': 'Alibaba-NLP/gte-large-en-v1.5', # Jan 2024
# 'qwen3-embedding-4b': 'Qwen/Qwen3-Embedding-4B', # April 2025
'mxbai-embed-large-v1': 'mixedbread-ai/mxbai-embed-large-v1',
}
# On clustering
# mixedbread-ai/mxbai-embed-large-v1: 46.71
# gte-large-en-v1.5: 47.95
# Qwen/Qwen3-Embedding-0.6B: 52.33
# Qwen/Qwen3-Embedding-4B: 57.15
# On STS
# gte-large-en-v1.5: 81.43
# Qwen/Qwen3-Embedding-0.6B: 76.17
# Qwen/Qwen3-Embedding-4B: 80.86
# mixedbread-ai/mxbai-embed-large-v1: 85.00
# Load all models into memory
print("Loading sentence transformer models...")
models = {}
models['all-mpnet-base-v2'] = SentenceTransformer('all-mpnet-base-v2')
print("Loading Alibaba-NLP/gte-large-en-v1.5")
models['gte-large-en-v1.5'] = SentenceTransformer('Alibaba-NLP/gte-large-en-v1.5', trust_remote_code=True)
#print("Loading Qwen/Qwen3-Embedding-4B")
#models['qwen3-embedding-4b'] = SentenceTransformer('Qwen/Qwen3-Embedding-4B', trust_remote_code=True)
print("Loading mixedbread-ai/mxbai-embed-large-v1")
models["mxbai-embed-large-v1"] = SentenceTransformer('mixedbread-ai/mxbai-embed-large-v1')
print("All models loaded!")
model = SentenceTransformer('all-mpnet-base-v2')
sent_detector = nltk.data.load('tokenizers/punkt/english.pickle')
def cos_sim(a, b):
@ -40,7 +76,8 @@ def get_sentences(source_text):
sentences = [source_text[start:end] for start, end in sentence_ranges]
return sentences, sentence_ranges
def text_rank(sentences):
def text_rank(sentences, model_name='all-mpnet-base-v2'):
model = models[model_name]
vectors = model.encode(sentences)
adjacency = torch.tensor(cos_sim(vectors, vectors)).fill_diagonal_(0.)
adjacency[adjacency < 0] = 0
@ -51,9 +88,9 @@ def terminal_distr(adjacency, initial=None):
scores = sample.matmul(torch.matrix_power(adjacency, 10)).numpy().tolist()
return scores
def extract(source_text):
def extract(source_text, model_name='all-mpnet-base-v2'):
sentences, sentence_ranges = get_sentences(source_text)
adjacency = text_rank(sentences)
adjacency = text_rank(sentences, model_name)
return sentence_ranges, adjacency
def get_results(sentences, adjacency):