salience-editor/api/benchmarks/test_bench_cosine_sim.py

113 lines
3.5 KiB
Python

"""
Benchmark different cosine similarity implementations using pytest-benchmark.
First run: python generate_embeddings.py
Then run: pytest test_bench_cosine_sim.py --benchmark-json=genfiles/benchmark_results.json
To visualize: python visualize_benchmarks.py genfiles/benchmark_results.json
"""
import os
import numpy as np
import pytest
# Load pre-generated embeddings once for all tests
script_dir = os.path.dirname(os.path.abspath(__file__))
embeddings_path = os.path.join(script_dir, 'genfiles', 'embeddings.npy')
vectors = np.load(embeddings_path)
# Original cos_sim function from salience.py
def cos_sim_original(a, b):
sims = a @ b.T
a_norm = np.linalg.norm(a, axis=-1)
b_norm = np.linalg.norm(b, axis=-1)
a_normalized = (sims.T / a_norm.T).T
sims = a_normalized / b_norm
return sims
# Nested for loop version
def cos_sim_nested_loop(a, b):
n = a.shape[0]
m = b.shape[0]
sims = np.zeros((n, m))
for i in range(n):
for j in range(m):
dot_product = np.dot(a[i], b[j])
norm_a = np.linalg.norm(a[i])
norm_b = np.linalg.norm(b[j])
sims[i, j] = dot_product / (norm_a * norm_b)
return sims
# E*E^T with manual in-place normalization
def cos_sim_inplace_norm(a, b):
# Compute raw dot products
sims = a @ b.T
# Compute norms once
a_norms = np.linalg.norm(a, axis=-1)
b_norms = np.linalg.norm(b, axis=-1)
# Normalize in place
for i in range(sims.shape[0]):
for j in range(sims.shape[1]):
sims[i, j] = sims[i, j] / (a_norms[i] * b_norms[j])
return sims
# Broadcast division with in-place operations
def cos_sim_broadcast_inplace(a, b):
# Compute raw dot products
sims = a @ b.T
# Compute norms once
a_norms = np.linalg.norm(a, axis=-1, keepdims=True) # shape (n, 1)
b_norms = np.linalg.norm(b, axis=-1, keepdims=True) # shape (m, 1)
# Divide by a_norms (broadcasting across columns)
sims /= a_norms
# Divide by b_norms.T (broadcasting across rows)
sims /= b_norms.T
return sims
# Verify all implementations produce the same results
def test_correctness():
"""Verify all implementations produce identical results"""
result_original = cos_sim_original(vectors, vectors)
result_nested = cos_sim_nested_loop(vectors, vectors)
result_inplace = cos_sim_inplace_norm(vectors, vectors)
result_broadcast = cos_sim_broadcast_inplace(vectors, vectors)
assert np.allclose(result_original, result_nested, atol=1e-6)
assert np.allclose(result_original, result_inplace, atol=1e-6)
assert np.allclose(result_original, result_broadcast, atol=1e-6)
# Benchmark tests
def test_bench_original(benchmark):
"""Original vectorized implementation"""
result = benchmark(cos_sim_original, vectors, vectors)
assert result.shape == (vectors.shape[0], vectors.shape[0])
def test_bench_nested_loop(benchmark):
"""Nested loop implementation"""
result = benchmark(cos_sim_nested_loop, vectors, vectors)
assert result.shape == (vectors.shape[0], vectors.shape[0])
def test_bench_inplace_norm(benchmark):
"""E*E^T with in-place normalization"""
result = benchmark(cos_sim_inplace_norm, vectors, vectors)
assert result.shape == (vectors.shape[0], vectors.shape[0])
def test_bench_broadcast_inplace(benchmark):
"""Broadcast with in-place operations"""
result = benchmark(cos_sim_broadcast_inplace, vectors, vectors)
assert result.shape == (vectors.shape[0], vectors.shape[0])